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ABSTRACT

Differentiable digital signal processing (DDSP) tech-
niques, including methods for audio synthesis, have
gained attention in recent years and lend themselves to
interpretability in the parameter space. However, cur-
rent differentiable synthesis methods have not explicitly
sought to model the transient portion of signals, which is
important for percussive sounds. In this work, we present
a unified synthesis framework aiming to address tran-
sient generation and percussive synthesis within a DDSP
framework. To this end, we propose a model for per-
cussive synthesis that builds on sinusoidal modeling syn-
thesis and incorporates a modulated temporal convolu-
tional network for transient generation. We use a modi-
fied sinusoidal peak picking algorithm to generate time-
varying non-harmonic sinusoids and pair it with differen-
tiable noise and transient encoders that are jointly trained
to reconstruct drumset sounds. We compute a set of re-
construction metrics using a large dataset of acoustic and
electronic percussion samples that show that our method
leads to improved onset signal reconstruction for membra-
nophone percussion instruments.
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1. INTRODUCTION

Modeling of instrumental tones using data-driven methods
and neural networks has received considerable attention
in recent years. Differentiable digital signal processing
(DDSP) enables classical audio synthesis algorithms to be
integrated with neural networks and incorporated within
gradient descent training regimes. DDSP synthesis meth-
ods have enabled high-quality and controllable audio syn-
thesis with less training data compared to other deep learn-
ing approaches by leveraging the signal generation capa-
bilities of DSP [1]. Additionally, these techniques have
enabled rich synthesizer interaction methods, including
audio-driven control of synthesizers, interpretable con-
trols based on time-varying pitch envelopes, and timbre
transfer applications.

The first work on DDSP by Engel et al. [2] used a
differentiable sinusoidal plus noise synthesizer based on
Serra’s original method [3] for instrumental audio synthe-
sis. While a large body of research has followed, it has fo-
cused almost exclusively on modeling of harmonic tones
with little application to unpitched percussion sounds.
Furthermore, DDSP synthesis approaches have not sought
to explicitly address the transient / onset portion of instru-
ment signals, a signal component that is both important to
musical audio perception [4] and is known to be poorly
handled by sinusoidal plus noise synthesis [5]. To this
end, we explore sinusoidal plus noise modeling synthe-
sis for non-harmonic percussion signals (i.e., drums and
cymbals) and propose the addition of a temporal convo-
lutional network (TCN) to handle transient / onset signal
components in a differentiable framework. Within our ap-
proach, a non-harmonic sinusoidal signal is generated us-
ing sinusoidal modeling synthesis (SMS) [3] and parame-
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ter encoders for noise and transient synthesizers are jointly
trained. A latent representation of the transient signal is
generated by the transient encoder, paving the way for fu-
ture work on controllable drum synthesis within a differ-
entiable, data-driven paradigm.

In this work, we focus on the reconstruction of un-
pitched drum sounds to explore the strengths and weak-
nesses of our proposed method for drum synthesis. We
train our model using a diverse dataset of electronic and
acoustic drumset sounds and evaluate the results using a
number of reconstruction metrics. We find that our pro-
posed method improves onset reconstruction for membra-
nophones, although adds artifacts that degrade the decay
portion of the sound. We conclude with suggestions for
future work focused on controllable differentiable drum
synthesis, which builds on the methods proposed here.

2. BACKGROUND

2.1 Drum Synthesis

Synthesis of drum sounds has been explored extensively
in previous work. In contrast to physically-informed ap-
proaches for percussion synthesis [6, 7], spectral synthe-
sis methods, which include sinusoidal modeling synthe-
sis (SMS) [3], seek to model perceptual qualities of audio
signals. SMS has been used for percussive synthesis [8],
including as an analysis step for modal synthesis [6]. Re-
cent research used a time-frequency analysis method and
sinusoidal synthesis to model tom drum sounds that were
indistinguishable from real sounds in a listening test [9],
pointing to the potential for SMS for high-quality, real-
time drum synthesis. In contrast to traditional synthesis
methods, data-driven approaches learn synthesis functions
from a corpus of audio. Related work specific to drum
synthesis has utilized convolutional neural networks [10],
generative adversarial networks [11], and diffusion net-
works [12].

2.2 Differentiable Digital Signal Processing

Differentiable digital signal processing (DDSP) combines
the strengths of traditional DSP approaches with data-
driven approaches. A significant body of work has ex-
plored the application of DDSP for the synthesis of har-
monic instrumental tones [2, 13], including pitched per-
cussion (i.e., piano) [1]. Directly estimating the frequen-
cies of oscillators using gradient descent is a challenging
problem due to the oscillatory nature of loss surfaces pro-
duced by current audio reconstruction objectives [14, 15].

Most approaches rely on pitch estimation algorithms and
harmonic oscillators to circumvent this problem. As a re-
sult, DDSP has seen limited application in the modeling of
non-harmonic sounds, and therefore unpitched percussion
instruments. The one exception is the recent work by Diaz
et al. [16], which implemented a differentiable modal res-
onator. Here, we identify the lack of transient modeling
as another limitation of current DDSP methods for syn-
thesizing percussive sounds, and propose the use of TCNs
to generate these signal components.

2.3 Transient Modeling

Transient and onset signals, defined by abrupt changes in
amplitude, phase, or frequency information [17], are not
well represented by sinusoidal plus noise models, which
is the basis of many DDSP approaches. While musical
onsets and transient regions are an important perceptual
component for all musical sounds [4], they are particu-
larly important for percussive audio, which often contains
rapidly decaying signal components following an impul-
sive event. Levine and Smith [18] suggest that sinusoidal,
noise, and transient signal components be modeled sep-
arately and proposed a method for isolating transients.
Similar approaches proposed extracting attack or transient
signal components [3], applying modifications to the sinu-
soidal signal components, and then re-inserting transients
directly to the output. Verma and Meng [5] suggest that
sinusoidal modeling can also be used to model transient
signals if conducted in the correct signal domain, and pro-
pose doing so in the discrete cosine transform (DCT) do-
main. An alternative approach proposed a source filter
method [17], reframing the transient modeling formula-
tion as transient ∗ sines + noise. Conceptually, our ap-
proach is similar to this source filter formulation; however,
we use gradient descent to estimate parameters for a TCN
which acts as a filter for transient generation.

2.4 Temporal Convolutional Networks

Temporal convolutional networks (TCNs) use multiple
layers of time domain convolutions followed by non-
linear activation functions and have been successfully ap-
plied to many deep learning audio tasks including audio
synthesis [19] and audio effect modeling [20]. Dilated
convolution kernels with exponentially increasing dilation
rates enable larger receptive fields with relatively few lay-
ers, helping to address temporal signal dependencies. A
dilated TCN was used by Wang et al. [21] in a source-
filter based approach for voice synthesis. We explore a
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similar approach for transient synthesis using TCNs and a
sinusoidal input signal.

3. METHOD

Our proposed approach, shown in Figure 1, consists of
three parallel analysis and synthesis pipelines that aim to
model an input drum signal y using sinusoidal, noise, and
transient components. Their outputs are then combined
following a mixing strategy to resynthesize an approxi-
mation ŷ of the input.

3.1 Sinusoidal Modeling

The sinusoidal pipeline seeks to model tonal signal com-
ponents with a set of time-varying sinusoids. In particular,
the system aims to extract parameters ⟨aji , f

j
i , ϕ

j⟩, which
denote the ith frame-wise amplitude and frequency, and
the initial phase of the jth sinusoidal component, respec-
tively. Due to the aforementioned challenges related to es-
timating frequency parameters using gradient descent, we
instead employ a well-known tracking algorithm based on
sinusoidal peak picking [3]. We use the constant-Q trans-
form (CQT) for our time-frequency representation as it
provides improved frequency resolution, which is impor-
tant for certain percussion sounds (e.g., kick drums). We
track NS sinusoidal components on the CQT spectrogram
of the input signal, with a minimum frequency of 20 Hz,
24 bins per octave, and a total frequency span of 10 oc-
taves. Finally, we synthesize the sinusoidal components
Sn by linearly interpolating the amplitudes and frequen-
cies from frame to sample rate and adding the extracted
initial phase to each component, as shown in Equation 1.

Sn =

NS∑
j=1

ajnsin(2π · f j
n · n+ ϕj) (1)

3.2 Noise Modeling

The noise pipeline consists of a frame-level analysis net-
work implemented with a SoundStream encoder [22]
without its residual vector quantizer and a filtered noise
generator with linear frequency bands based on [2]. The
encoder is composed of a 1D convolutional input layer,
followed by a series of non-causal 1D convolutional
blocks, each including three residual units of tripling di-
lation ratio, and a strided downsampling layer with ELU
activation. Finally, an output convolutional layer projects
the intermediate representation to the appropriate number
of output channels.

The noise encoder takes the input audio and predicts
a frame-wise sequence νi ∈ RNN of gain coefficients for
filters equally spaced on a linear frequency scale, with i
denoting the ith frame and NN the number of filter bands.
Since our sinusoidal model presents high resolution on the
low-frequency spectrum, we use a noise generator on a
linear scale to account for the high frequencies of drum
signals even when using a few noise bands.

Finally, the encoder’s output is then relayed to the
control input of the noise generator, which synthesizes an
impulse response for each set of filter coefficients νi us-
ing the inverse discrete Fourier Transform, here denoted
as F−1(.). The inversion yields an impulse response of
length 2NN which is then padded with zeroes left and
right up to a length 2h. They are convolved with a white
noise signal ϵn and then aggregated using overlap-add
over L Hanning windows w(.) of length 2h, with h be-
ing the hop size of the operation. The noise component N
is generated as shown in Equation 2.

Nn =

L∑
i=1

w(n− hi)(ϵn ∗ F−1(νi)) (2)

3.3 Transient Modeling

Given a drum signal resynthesized with sinusoidal and
noise components as input, we design a pipeline to gener-
ate transients that are not effectively modeled by the other
components. The transient modeling pipeline has two
goals: i) learn a controllable non-linear transfer function
T : x, z → y that processes the sinusoidal and noise com-
ponents as monophonic audio signals of length L, x ∈ RL

and generates an output with improved transients y ∈ RL ;
ii) learn a controller network that predicts a transient con-
ditioning vector z ∈ RD to control transient synthesis for
a particular input.

We implement the transfer function with a TCN ar-
chitecture similar to [20], which can be seen as a chain
of non-linearities and filters that operate at the audio rate.
We use Feature-wise Linear Modulation (FiLM) [23] as a
method to control the distortion and filtering characteris-
tics of the TCN, conditioned on the encoded input drum
signal z. FiLM functions by applying an affine transform
to the output of the convolution of each layer of the TCN.
A unique multi-layer perceptron is learned for each TCN
layer and maps from the transient encoding z produced by
the controller network to shift and scale parameters for the
affine transform. The controller network is implemented
with a SoundStream encoder similar to the noise encoder.



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

Figure 1. Our system models an input drum waveform y using three parallel pipelines: sinusoids, noise,
and transients. The sinusoidal components are obtained by tracking, while noise and transient components
are learned through differentiable modeling. A function, T (.), is learned for reconstructing transients from
the sinusoidal and noise components, which is controlled by a vector z generated by a transient encoder. We
explore several strategies for mixing signal components, which are fed to T (.) or directly to the output, as
indicated by the switches in the figure. A mixing scheme is predefined for a model.

However, we use attention pooling to aggregate the frame-
wise features predicted by the transient encoder into a sin-
gle latent embedding vector z used for FiLM.

4. EXPERIMENTS

We conducted a series of experiments to evaluate our ap-
proach in terms of audio reconstruction. To this end, we
composed several different configurations of our model to
help us understand the potential benefits of using a TCN
to generate transient signal components. We consider four
different mixing strategies: 1) transient generation from
sines only, denoted T (S); 2) transient generation from
mixed sines and noise, denoted T (S + N); 3) transient
generation from sines, with noise added in parallel, de-
noted T (S) +N ; 4) transient generation from sines, with
noise and sines added in parallel, denoted T (S)+S+N .
We baseline these approaches against sinusoids only S
and sinusoids plus noise only S + N . Audio examples
of results and architecture details are provided on an ac-
companying website.1

Due to the lack of high-quality, open-source one-
shot drum samples, we curated our experimental dataset

1https://jordieshier.com/projects/
differentiable_transient_synthesis/

from the author’s collection of commercial sample packs.
While the FreeSound One-Shot Percussion dataset [10]
contains over 10k sounds, the dataset sample rate is 16kHz
and samples aren’t annotated with sound source or instru-
ment. We used samples that were professionally produced
at full audio resolution, allowing us to conduct our exper-
iments at a sample rate of 48kHz, which we feel is im-
portant for evaluating transient signal components and im-
proves the applicability of our method to music production
contexts.

The final dataset contained 25k samples with an equal
split of acoustic and electronic sources, and included kick,
snare, tom, hihat, cymbals, and a variety of other per-
cussion instruments. All samples were preprocessed to
remove starting silence and trimmed or padded to two
seconds. Samples were distributed into train, validation,
and testing splits (80/10/10), ensuring an equal balance of
acoustic and electronic samples and that samples originat-
ing from the same sample pack (i.e., recorded on the same
drum in the same room) were contained within a single
split.

We configure the sinusoidal tracker with a maximum
number of sinusoids NS=64, and a hop size of 256 sam-
ples. The noise generator uses NN=128 noise bands and a
hop size h=128 samples. We use a transient conditioning

https://jordieshier.com/projects/differentiable_transient_synthesis/
https://jordieshier.com/projects/differentiable_transient_synthesis/
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All Acoustic Electronic

Method MSS ↓ LSD ↓ SF ↓ MSS ↓ LSD ↓ SF ↓ MSS ↓ LSD ↓ SF ↓

S 1.34 2.51 153.7 1.66 3.64 80.9 1.03 1.38 226.6
S +N 0.92 1.20 152.6 1.06 1.65 79.6 0.77 0.75 225.8

T (S) 0.99 1.70 131.1 1.16 2.31 54.9 0.81 1.08 207.5
T (S +N) 0.87 1.45 128.7 1.00 1.80 59.2 0.74 1.09 198.3
T (S) +N 0.85 1.36 128.8 0.99 1.74 54.6 0.71 0.99 203.1
T (S) + S +N 0.86 1.39 123.4 1.00 1.75 56.5 0.73 1.02 190.1

Table 1. Overall reconstruction error metrics. Under method, S, N , and T () refer to the sinusoidal, noise, and transient
synthesis methods, respectively. MSS is multi-resolution spectral loss (the train loss), LSD is log spectral distance, and
SF is spectral flux onset error.

Kick Snare Tom Cymbals

Method MSS ↓ LSD ↓ SF ↓ MSS ↓ LSD ↓ SF ↓ MSS ↓ LSD ↓ SF ↓ MSS ↓ LSD ↓ SF ↓

S 1.22 2.18 470.5 1.37 2.44 84.8 1.31 3.10 185.1 1.47 2.64 12.8
S +N 0.92 1.06 470.4 0.91 1.03 84.0 0.81 1.27 185.0 0.98 1.43 10.3

T (S) 0.93 1.60 388.8 0.93 1.47 62.8 0.93 1.83 181.2 1.11 1.90 11.7
T (S +N) 0.79 1.34 364.6 0.83 1.30 58.3 0.77 1.47 200.1 1.00 1.62 12.7
T (S) +N 0.76 1.28 379.6 0.81 1.21 58.3 0.75 1.41 183.0 0.99 1.53 12.6
T (S) + S +N 0.77 1.30 372.1 0.84 1.24 54.4 0.76 1.43 167.0 1.01 1.56 11.4

Table 2. Reconstruction metrics calculated on specific percussion instruments. Cymbals include hihats.

vector of length 128: z ∈ R128 and the TCN is com-
posed of 8 blocks with a dilation factor of 2 and 32 hid-
den channels. While the TCN can process monophonic
audio signals of any duration, all samples used in these
experiments had a duration of two seconds. All encoders
were optimized using a multi-resolution spectral loss with
the same configuration of FFT, window, and hop sizes
as in [24], which has also been used in prior work using
TCNs for audio effect modeling [20]. This loss is calcu-
lated as a weighted sum of the spectral convergence and
log-magnitude spectral difference. We used an Adam op-
timizer with an initial learning rate of 1e−4 and a batch
size of 12. Similar to [20], the learning rate was sched-
uled to decrease by a factor of two if the validation loss
did not decrease for 20 epochs, and training was halted if
validation loss failed to improve for a further 20 epochs.
All training runs were capped at 48 hours.

4.1 Reconstruction Evaluation

We consider three metrics to evaluate audio reconstruc-
tion: multi-resolution STFT error (same as the training
loss, denoted MSS), log spectral distance (LSD) using the
same formulation as [25], and the mean absolute error be-
tween the spectral flux onset signals (SF) [26] extracted
from y and ŷ. The spectral flux onset signal is calculated
as the L2 norm on the rectified spectral difference:

SF (n) =

N
2 +1∑
ω=0

H(|Xω(n)| − |Xω(n− 1)|)2 (3)

where H(x) is a rectified linear unit, H(x) = (x+ |x|)/2,
which includes only positive differences to emphasize
the onset. Because applying a log transformation de-
emphasizes transients, the LSD provides insight into the
reconstruction of the signal with the decay emphasized,
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whereas SF error provides insight into the reconstruction
of signal transients and onsets.

Reconstruction results computed on acoustic and
electronic percussion samples, separately and combined,
are shown in Table 1. Additionally, reconstruction met-
rics are shown for a selection of individual percussion in-
struments: kicks, snares, toms, and cymbals (which in-
cludes hihat) in Table 2. Looking at the spectral flux onset
error, the transient TCN models achieved the lowest er-
ror in all tests except for the individual cymbal sounds,
where the sines plus noise model outperforms TCN mod-
els. The sines plus noise model achieved the best recon-
struction results in terms of LSD for all tests. Interest-
ingly, the MSS loss, which was the training objective, was
lowest for transient TCN models, except for the individ-
ual cymbals. Investigating the separate spectral loss terms
contributing to the MSS (i.e., spectral convergence and
log-magnitude spectral difference), we note that models
containing a TCN more efficiently decreased the spectral
convergence term compared to the log-magnitude spectral
difference.

These results point to the following four takeaways:
1) Using a transient TCN generally improved signal on-
set reconstruction for membranophones (i.e., kick, snare,
tom); 2) Sinusoidal plus noise without the TCN worked
the best for idiophones (i.e., cymbals and hihats); 3) Gen-
erally, models that use noise summed in parallel per-
formed better than models without; and 4) The transient
TCN more effectively reduced spectral convergence loss
during training, which appears to be correlated with im-
proved onset reconstruction. The implication is that TCNs
improved onsets at the expense of the signal decay. This
was verified in an informal listening test during which we
noted the addition of artifacts, similar to comb filtering, in
the decay portion of TCN reconstructions.

4.2 Visualizing the Transient Embedding

We visualized the test dataset by producing embeddings
using the trained transient encoder to provide further in-
sight into the transient parameter space. For each audio
sample, the result is an embedding vector z ∈ R128. For
visualization, we use t-SNE [27], a common dimensional-
ity reduction technique used to visualize high-dimensional
data, to map embeddings to a two-dimensional space. Fig-
ure 2 shows the resulting 2D mappings; samples are sep-
arately plotted for acoustic and electronic samples and
are colour-coded by instrument type to highlight clusters
based on instruments within the embedding space. The

embedding space features shared characteristics within in-
strument and sample types, showing small overlaps across
these groups. This indicates that there is a continuum in
the space, where in many cases, different instruments in a
vicinity feature similar embeddings. However, there is a
progressive variation across instrument and sample types,
with transient characteristics becoming more salient at
specific locations. For instance, the electronic and acous-
tic sounds clearly occupy separate areas of the point cloud.
We additionally note the relatively large distance between
kicks, hihats, and cymbals groups.

Observing the samples in the point cloud, we can in-
fer that the embedding of our encoder represents well the
sound characteristics required by the different samples.
This opens up the possibility to parameterize the space to
gain high-level control over the transients of drum sounds.
This could serve as a first stepping stone towards control-
lable differentiable drum synthesis.

5. CONCLUSIONS

We presented a neural audio synthesis architecture for
drum modeling in terms of three major sound components.
In particular, we used a TCN modulated with FiLM em-
beddings as a method to reconstruct transient / onset sig-
nals within a sines plus noise synthesis model. We trained
parameter encoders for transient and noise signal genera-
tors on a diverse dataset of acoustic and electronic drumset
sounds and evaluated the resulting models using recon-
struction metrics. Although we modelled transients indi-
rectly using MSS loss, the TCN learned to model short-
term signal features associated with membranophone on-
sets. We note that this came at the expense of added arti-
facts during the decay portion of the signal, which is re-
flected by the LSD. This points to the need for further
work looking at how we can balance resynthesis fidelity
of transient and decay signal components.

Our work takes a step towards a fully differentiable
model for percussive synthesis using a neural source-
filter approach for transient modeling. One major tech-
nical roadblock to realizing a fully differentiable percus-
sion synthesizer is frequency estimation using gradient de-
scent. Future work may leverage recent findings by Hayes
et al. [15] for this problem. Beyond exploring solutions
to these technical challenges, future work includes inves-
tigating the affordances of our analysis-synthesis frame-
work for creative practices. For instance, by leveraging
the latent space of a variational autoencoder for high-level
control of each sonic component.



10th Convention of the European Acoustics Association
Turin, Italy • 11th – 15th September 2023 • Politecnico di Torino

40 20 0 20 40
tsne-2d-one

40

20

0

20

40

60

ts
ne

-2
d-

tw
o

sampletype = acoustic

40 20 0 20 40
tsne-2d-one

sampletype = electronic

instrument
percussion
hihat
snare
cymbals
tom
kick
clap

Figure 2. t-SNE plots of transient embeddings z colored by percusison type. Left plot is acoustic instruments
and right plot is electronic.
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