
The Synthesizer Programming Problem: Improving the Usability of Sound

Synthesizers

by

Jordie Shier

B.Sc., University of Victoria, 2017

A Thesis Submitted in Partial Fulfillment of the

Requirements for the Degree of

MASTER OF SCIENCE

in Interdisciplinary Studies

© Jordie Shier, 2021

University of Victoria

All rights reserved. This thesis may not be reproduced in whole or in part, by

photocopying or other means, without the permission of the author.

We acknowledge with respect the Lekwungen peoples on whose traditional territory

the university stands and the Songhees, Esquimalt, and W
¯
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Abstract

The sound synthesizer is an electronic musical instrument that has become common-

place in audio production for music, film, television and video games. Despite its

widespread use, creating new sounds on a synthesizer – referred to as synthesizer pro-

gramming – is a complex task that can impede the creative process. The primary aim

of this thesis is to support the development of techniques to assist synthesizer users

to more easily achieve their creative goals. One of the main focuses is the develop-

ment and evaluation of algorithms for inverse synthesis, a technique that involves the

prediction of synthesizer parameters to match a target sound. Deep learning and evo-

lutionary programming techniques are compared on a baseline FM synthesis problem

and a novel hybrid approach is presented that produces high quality results in less

than half the computation time of a state-of-the-art genetic algorithm. Another focus

is the development of intuitive user interfaces that encourage novice users to engage

with synthesizers and learn the relationship between synthesizer parameters and the

associated auditory result. To this end, a novel interface (Synth Explorer) is intro-

duced that uses a visual representation of synthesizer sounds on a two-dimensional

layout. An additional focus of this thesis is to support further research in automatic

synthesizer programming. An open-source library (SpiegeLib) has been developed to

support reproducibility, sharing, and evaluation of techniques for inverse synthesis.

Additionally, a large-scale dataset of one billion sounds paired with synthesizer pa-

rameters (synth1B1) and a GPU-enabled modular synthesizer (torchsynth) are also

introduced to support further exploration of the complex relationship between syn-

thesizer parameters and auditory results.
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Chapter 1

Introduction

The sound synthesizer is a familiar tool for many musicians and audio practitioners

working in music, film, video games, and other industries related to audio production.

Despite its widespread use, the task of programming new sounds into a synthesizer

is complex and requires a thorough understanding of sound design principles and

technical details. It is not uncommon for a software synthesizer to have thirty or

more parameters displayed on a user interface and labelled using technical names

specific to the particular device [108]. Synthesizer programming involves manually

adjusting these parameters to achieve a desired sound. The task is further complicated

by the fact that modifications to these parameters are often not intuitively reflected

in the end sonic result. The implication of these constraints is that there is a large

learning curve associated with becoming an effective synthesizer programmer and

even experienced musicians and audio practitioners can find the task of programming

a synthesizer disruptive to their creative process [79]. This is referred to as the

“synthesizer programming problem.”

The central goal of this thesis is to support the development of methods that

address the challenges of synthesizer programming. These methods have the potential

to make synthesizers more accessible and enable more individuals to be creative more

often. The benefits of engaging in the creative process on a regular basis have been

proven [26] and music technology has the power to enable individuals to express

themselves in domains that were previously unavailable to them [134]. Developing

methods that lower the barrier to entry can allow novices to work with synthesizers

in ways that would have previously been unavailable to them. It would also enable

them to gain experience more quickly and easily, and remove impediments to their

creative process.
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Automatic synthesizer programming is the field of research that involves the devel-

opment of techniques and tools to address the challenges of synthesizer programming.

It is inherently interdisciplinary and draws from fields including digital signal process-

ing, creativity support, music interaction, artificial intelligence, and machine learning.

Work in automatic synthesizer programming dates back to the 1970s [74]. A large

body of research that explores a variety of approaches for improving and automating

the task of synthesizer programming has followed. One central focus of automatic

synthesizer programming has been sound matching, or inverse synthesis, which in-

volves predicting synthesizer parameters that will recreate a target sound as closely

as possible [64]. A number of other methods have also been proposed such as using

descriptive words [118] or vocal imitations [16]. Despite the breadth of work on the

topic, the task of automatic synthesizer programming remains a complex problem

with many open questions. The continued desires expressed by synthesizer users for

improved methods of synthesizer programming points to the need for further work in

this field [79].

The main goal of this thesis is to explore and contribute to the algorithmic and

user interaction aspects of the synthesizer programming problem. The challenge with

synthesizer programming is essentially a human-computer interaction (HCI) problem;

the conceptual gap between synthesizer parameters and the associated auditory result

is large and users are forced to bridge that gap themselves, which involves a steep

learning curve. Novel user interaction paradigms help users communicate ideas to

synthesizers in ways that support their creativity, such as using example sounds [64,

153], vocal imitations [16, 155], or descriptive words [118]. Algorithmic techniques

involving artificial intelligence and machine learning, including deep learning, have

been used to create new user interfaces for synthesizer programming and are also

a focus of this thesis. Inverse synthesis, which synthesizer users have identified as

helpful [79], has especially benefited from advancements in deep learning in recent

years. In this thesis, several techniques for inverse synthesis are evaluated, and a

new approach that combines the strengths of evolutionary programming and deep

learning is introduced. A novel interface for exploring synthesizer sounds using two-

dimensional visualizations is presented in chapter 7, along with a design framework

for automatic synthesizer interactions.

A secondary goal of this thesis is to support continued development in the field of

automatic synthesizer programming and to encourage collaboration and reproducible

research [142]. A related field of study, music information retrieval (MIR), has ben-
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efited from open-source software, open datasets, and shared evaluations. However,

there are few examples of similar shared resources and collaboration in the field of au-

tomatic synthesizer programming. The open-source software and datasets that were

developed by the author as a part of this thesis are inspired by the contribution of sim-

ilar resources to the field of MIR. Chapter 4 presents an open-source library – named

spiegelib after American electronic music composer Laurie Spiegel – for sharing and

evaluating inverse synthesis algorithms. Chapter 6 presents a large-scale multi-modal

synthesizer sound dataset called synth1B1 and an open-source GPU-enabled modular

software synthesizer called torchsynth that is used to generate synth1B1. synth1B1

and torchsynth are designed to assist in the investigation of the complex relationship

between synthesizer parameters and associated auditory output.

1.1 Research Questions

The main challenges in synthesizer programming arise from the disconnect between

synthesizer parameters and the associated auditory output. The result of this discon-

nect is that synthesizers are difficult to use, have a high-barrier to entry, and impede

the creative process of creating music and producing audio. The purpose of this thesis

is to address these challenges. The main research question is:

How can designers of synthesizer programming interfaces enable more people
to be more creative more often?

Fundamental to answering this question is developing an understanding of the

complex relationship between synthesizer parameters and the associated auditory

result. Automatic synthesizer programming seeks to develop this understanding and

bridge the conceptual gap between synthesizer parameters and the associated auditory

output. More specific sub-questions that have motivated the work presented in this

thesis are listed in the sections below.

1.1.1 Automatic Synthesizer Programming

What is the field of automatic synthesizer programming? What makes synthesizer

programming so challenging and how do those challenges inform research focused

on improving and automating it? A significant amount of previous work has been

conducted in this field covering a large number of different approaches. How can
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we organize the body of previous work to help understand the problem and the

approaches that have been taken?

1.1.2 Inverse Synthesis

A substantial portion of previous work in automatic synthesizer programming has

focused on algorithmic techniques for inverse synthesis. Many early approaches used

evolutionary programming and more recent techniques use deep learning. How do

evolutionary approaches compare to deep learning? What are the strengths and

weaknesses of each of these approaches? What types of deep learning models are best

suited for inverse synthesis? How can we support open evaluation and reproducibility

of these approaches?

1.1.3 Representing Synthesized Sounds

A key component of developing automated synthesizer programming systems is being

able to effectively answer the question: how similar is sound X to sound Y? How do

we represent audio computationally and how do we define a metric that can help in

answering this question?

1.1.4 Generating Synthesized Sounds

Datasets of synthesized audio and associated parameters are important for research

on understanding the relationship between synthesizer parameters and the result-

ing audio, as well as for development of machine learning methods for synthesizer

programming. The simplistic approach is to uniformly sample the parameters of a

particular synthesizer. However, is uniformly sampling parameters the best approach

to generating parameter selections? The associated sounds in many cases do not

represent sounds that a human would have programmed in a musical context. How

can we sample synthesizer parameters to generate sounds that sound as if a human

programmed them?

1.1.5 Developing Supportive Tools

How do we create effective and intuitive user interfaces to support synthesizer pro-

gramming? To what extent should the tool automate the process of synthesizer pro-
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gramming? What interaction paradigms best support creativity? Which algorithmic

methods for automatic synthesizer programming can best support creativity?

1.2 Summary of Contributions

The main contributions of this thesis are the following:

1. A survey and taxonomy of related work in automatic synthesizer programming

from a user interaction perspective.

2. An open source software library designed to support the development, sharing,

and evaluation of automatic synthesizer programming techniques.

3. An evaluation of several techniques for inverse synthesis conducted on a bench-

mark frequency modulation (FM) synthesis task

4. A novel inverse synthesis technique that combines deep learning and a multi-

objective genetic algorithm.

5. Three open datasets, including one large-scale billion sound+parameter dataset

designed to support further research in synthesizer programming and deep learn-

ing training / pre-training.

6. An open-source GPU-enabled modular synthesizer for efficiently generating the

billion sound dataset on-the-fly and for supporting efficient research on synthesis

algorithms.

7. A design framework for developing tools to support synthesizer programming.

8. A prototype automatic synthesizer programming tool designed to support explo-

ration using two dimensional visualization of sounds based on sound similarity.

1.3 Thesis Structure

• Chapter 2 provides background information and historical context for audio

synthesizers. The challenges and opportunities associated with synthesizer pro-

gramming are outlined.
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• Chapter 3 contains an overview of the field of automatic synthesizer program-

ming. Synthesizer programming is framed as a human computer interaction

problem and the various interaction paradigms and algorithmic techniques pro-

posed in previous work is reviewed.

• Chapter 4 describes a software library the author has created to support research

in automatic synthesizer programming and to serve as a repository for sharing

and comparing approaches. This library was used for the experiments discussed

in chapter 5.

• Chapter 5 describes an inverse synthesis experiment that compares recent ap-

proaches as presented in the literature. Several deep learning models and genetic

algorithms were compared on a baseline FM synthesis problem. A novel hybrid

approach is also proposed.

• Chapter 6 introduces a large-scale synthesizer dataset and a GPU-accelerated

modular synthesizer called torchsynth that were designed to support further

research in automatic synthesizer programming.

• Chapter 7 outlines a novel automatic synthesizer programming application that

utilizes two-dimensional visualization of sounds to support exploration of syn-

thesizer sounds. The application was developed with novice users in mind and

is based on a set of design principles proposed as a framework to support the

design of assistive synthesizer programming tools.
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Chapter 2

Audio Synthesizers

Martin Russ introduces the synthesizer as any device that generates sound [115].

Even the human voice can be thought of as a synthesizer. However, sound synthe-

sizers have become more broadly accepted as an electronic musical instrument that

produces synthetic sounds. A synthesizer may do this through playback and recom-

bining preexisting audio or through generating and shaping raw audio waveforms.

Numerous types of synthesis techniques exist and are capable of producing a signifi-

cant variety of sounds.

This chapter serves as background for audio synthesizers to provide context and

motivation for research focused on improving their usability. Section 2.1 describes

the evolution of synthesizers and provides historical context for developments in syn-

thesizer technology relevant to this thesis. Section 2.2 overviews some of the main

components of a typical synthesizer and introduces two of the most common types of

synthesis: subtractive and frequency modulation (FM) synthesis. Section 2.3 intro-

duces the topic of synthesizer programming in more depth and discusses the associated

challenges and opportunities for improvement.

2.1 Evolution of Synthesizers

2.1.1 Analog Synthesizers

Until the late 1950s all synthesizers were analog. Analog synthesizers are defined

by their use of continuous-time signals, as opposed to digital synthesizers, which use

discrete-time signals (or signals consisting of separate, discrete pieces of information).

Early analog synthesizers can be broken down into two broad categories based on their



8

approach to sound generation: (1) sounds are generated directly by electric circuits or

oscillating vacuum tubes, or (2) sounds are generated by rotating or vibrating physical

systems that are controlled by electronic sources [111]. The first – and the largest –

sound synthesizer ever built was developed in the early 1900s by Thaddeus Cahill.

On September 26, 1906, an audience of 900 individuals gathered to view the massive

electronic instrument, called the Telharmonium, that was capable of producing pure

sinusoidal waves, which was sound that had never been heard before. Other early

synthesizers include the Theremin, built by Leon Theremin in 1920, which produced

a pure tone with a varying pitch and amplitude that is controlled by a performer

moving their arms in relation to two antennas. Versions of the theremin have been

used in popular music by musicians including The Beach Boys, Led Zeppelin, and

The Rolling Stones.

In the 1960s, two companies emerged on opposite sides of America and released

synthesizers that shaped the modern landscape of audio synthesis. Around 1964, Don

Buchla, who lived in the San Francisco area, released the the Buchla 100 Series Mod-

ular Electronic Music System. At the same time, in New York, Robert Moog released

the R.A. Moog Modular System [94]. Both synthesizers were modular systems con-

taining individual processing units called modules that could be interconnected using

patch cables. Connecting together synthesizer modules is known as creating a synth

patch, or simply a patch. Both the Buchla and Moog systems introduced Voltage-

Controlled Oscillators (VCOs) which created electronic waveforms at musical pitches

and could be controlled using an input signal called a control-voltage (CV). The Moog

Modular System also featured a Voltage Controlled Filter (VCF) that was an early

version of Moog’s famous ladder filter design. This filter could resonate at a control-

lable frequency and was responsible for creating some of the most iconic synthesizer

sounds that are still heard in contemporary music.

Important philosophical differences between Moog and Buchla Synthesizers lead

to two distinct schools of thought: East Coast and West Coast synthesis. The devel-

opment of the Buchla synthesizer by Don Buchla was guided by Morton Subotnick

and other experimental composers working out of the San Francisco Tape Music Cen-

ter. Subotnick explicitly requested that the synthesizer was not to be controlled by a

traditional keyboard interface as he was worried that it would trap him into creating

traditional tonal music. Instead, Buchla synthesizers are controlled using a set of

touch plates and sequencers. At the same time, on the East coast, Robert Moog was

developing the Moog Modular, which featured a traditional keyboard interface. This
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allowed the Moog Modular Systems to be integrated more easily with Western music

and was one of the reasons that Moog synthesizers became much more popular and

commercially successful compared to Buchla synthesizers.

Another reason that Moog synthesizers were launched into the public eye was

due to their use in recorded music. In 1968 Wendy Carlos used a Moog Modular

synthesizer to orchestrate, perform, and record a selection of Johann Sebastian Bach

pieces. The collection of music, called Switched On Bach, went on to become the best

selling classical recording of all time. Other musicians had recreated classical music

pieces on synthesizers, but none had reached the same level as Switch On Bach. The

success of the release was in part attributed to Carlos’ ability to design synthesizer

sounds that worked synergistically with Bach’s compositions [70]. Building on this

success, Carlos went on to score synthesized soundtracks for movies including Stan-

ley Kubrick’s A Clockwork Orange. Another exceptional example of classical music

recreated using Moog synthesizers is Japanese composer Isao Tomita’s Snowflakes

Are Dancing, which was released in 1974. The use of synthesizers in music and film

extends into almost all genres of music and was the cornerstone in the development of

new genres including techno and other electronic music genres. For more information,

see Mark Jenkins’ overview of the use of synthesizers throughout different genres of

music in his book Analog Synthesizers: Understanding, Performing, Buying [70].

2.1.2 Digital Synthesizers

The first experiments with digital synthesis were conducted by Max Mathews on an

IBM 704 computer in 1957 [110]. These experiments consisted of programming and

synthesizing melodies using simple waveforms. The Music III program was developed

by Mathews in 1960 and introduced an important concept called the unit generator,

which was used to define basic components of a synthesizer that could be connected

together in a similar way to how one one would “patch” a modular synthesizer.

Mathews describes this concept as being developed in parallel, but separate from

similar concepts in the analog synthesizer world (e.g., modular synthesizers). He

described this as “an advantage because a musician who knew who to patch together

Moog synthesizer units would have a pretty good idea how to put together unit

generators in the computer.”

In 1973 John Chowning, a researcher at Stanford, released landmark work on

Frequency Modulation (FM) synthesis [24]. The patent for FM synthesis was licensed
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to Yamaha who developed the Yamaha DX7 synthesizer using the technology. After

being released in 1983, the Yamaha DX7 became one of the best selling synthesizers

of all time. One of the major benefits of FM synthesis is that it can produce complex

audio waveforms at low computational cost. Additionally, the Yamaha DX7 was a

fully polyphonic synthesizer, which means that it was capable of producing multiple

tones simultaneously (i.e., able to play chords), whereas most analog synthesizers at

that time were monophonic (or only capable of playing one note at a time). The

Yamaha DX7 was also difficult to program, though it came preloaded with a large

selection of quality parameter settings, or presets, that allowed users to play the synth

without having to learn how to program it. The evidence for the difficulties in using

the DX7 have been primarily anecdotal, but “allegedly, nine out of ten DX7s [that

went into] workshops for servicing still had their factory presets intact” [119].

As digital technology improved and computers became more powerful, new syn-

thesis techniques, such as sampling synthesis [94], physical modelling [69], and digital

emulations of analog synthesizers, or virtual analog (VA) synthesis, emerged. The

development of more powerful computers also enabled recording workflows to be

transferred into software and professional recording studios started to transition to

digital with the release of Digidesign ProTools in the early 1990s. This shift has

democratized music technology and more people than ever before have been able to

start producing music [134].

2.1.3 Audio Plugins

In 1996, Steinberg1 released the Virtual Studio Technology (VST) interface, which

allowed third-party software including audio effects to be integrated into host appli-

cations, including digital audio workstations (DAWs) such as ProTools. Third-party

audio software that integrates into host applications like this are more broadly re-

ferred to as audio plugins. The second version of VST was released in 1999, which

added support for the Musical Instrument Digital Interface (MIDI) [114], a commu-

nication protocol enabling musical hardware and software to exchange information

and control signals. The addition of MIDI to the VST interface opened the doors

for VSTi, VST instruments, including software synthesizers. Other audio plug-in

architectures have been developed in addition to VSTs, popular examples including

Apple’s Audio Units (AU) and Avid’s Avid Audio eXtension (AAX). Audio plug-ins

1https://www.steinberg.net

https://www.steinberg.net
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are a platform for software developers to create and distribute unique audio effects

and synthesizers, and an industry dedicated to their development has blossomed over

the last three decades. At the time of writing, there are over 500 different synthesizer

plug-ins available on the KVR2 database of audio products.

2.2 Anatomy of a Synthesizer

Synthesizers can be viewed as comprising two major components: the synthesis en-

gine, which is where sound is generated, and a control interface, which allows a

user to control the synthesis engine [115]. Audio synthesis can be a complex process,

resulting in a high-level of abstraction between the synthesis engine and the control

interface. The role of the control interface is to present a conceptual model of the

synthesizer to a user, which allows the user to express their ideas and modify the

synthesis engine. The parameters on the control interface are mapped to components

within the synthesis engine – often in non-linear ways. Figure 2.1 shows a diagram of

the general components of a synthesizer and the control interface abstraction layer.

The following sections provide more detail on the two major components of a synthe-

sizer.

SYNTHESIS
ENGINE

CONTROL
INTERFACE

ABSTRACTION

Model

Mapping

USER

Figure 2.1: Abstraction between the synthesis engine and control interface. A control
interface on a synthesizer is responsible for presenting a conceptual model of the
underlying synthesis engine to a user. The parameters on the control interface are
mapped back to the synthesis engine to modify audio generation.

2https://www.kvraudio.com/plugins/softsynth-virtual-instruments

https://www.kvraudio.com/plugins/softsynth-virtual-instruments
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2.2.1 Synthesis Engine

The synthesis engine is at the heart of sound generation in any synthesizer, whether

it is an analog modular synth or a software audio plugin. Sam McGuire and Nathan

Van der Rest provide an overview of the more popular synthesis methods in their

book The Musical Art of Synthesis [94]. Popular synthesis methods include the

following: subtractive, sample-based, modulation (e.g. FM), additive, wavetable,

granular, vector, and physically modelling.

The exact technique that each synthesis method uses may differ; however, there are

common components across many different techniques. It is useful to take a modular

perspective when thinking about different synthesizer components, similar to the unit

generator concept introduced by Max Mathews [110]. From this perspective, different

components of a synthesizer are broken down into functional units (modules) that can

be interconnected in various ways to build up a full synthesizer. We can generalize

modules as both producing some output signal and having an optional input signal.

Modules may also have parameters that can be mapped to a control interface for

user control. We can broadly categorize the signals that are output by modules as

either audio signals or control signals. Audio signals are generated by the synthesizer

and are ultimately output as a sound. Control signals are used to modulate the

parameters of other modules within a synthesizer.

Types of Modules

We can further categorize modules into two different types based on the type of signal

they output: 1) audio modules, generate or process audio signals, and 2), control

modules, generate or process control signals. In analog synthesis, audio signals are

commonly generated by voltage-controlled oscillators (VCOs). The frequency of the

oscillator in a VCO is controlled by the voltage of an input control signal. While

voltages only exist in analog circuits, the concept has been extended into digital

synthesizers as well, with the digital equivalent of a VCO sometimes being referred to

as a digitally controlled oscillator (DCO). Other common audio modules are voltage-

controlled filters (VCFs), voltage-controlled amplifiers (VCAs), and noise sources.

Filters accept audio signals as input and attenuate, or boost, specific frequencies,

VCAs are essentially an automated volume knob, and noise sources generate different

types of noise, such as white noise.

Two common control modules are envelope generators (EGs) and low frequency
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oscillators (LFOs). Envelope generators are generally triggered in response to an

event, for example, a keyboard note being pressed. Once an EG has been initiated, it

produces a control signal that evolves over time. The most common EG is an attack-

decay-sustain-release (ADSR) envelope, which was designed to emulate the temporal

evolution of instrumental sounds. LFOs function the same as regular oscillators, but

at a frequency below the threshold of hearing. One common way that LFOs are used

is to modulate the pitch on a VCO to create vibrato.

Subtractive Synthesis

Subtractive synthesis was one of the earliest methods and is used in Moog synthesiz-

ers. The basic idea behind subtractive synthesis is to start with a harmonically rich

waveform and subtract from it using filters. This method is associated with the east

coast synthesis philosophy.

Frequency Modulation Synthesis

FM synthesis engines are capable of producing a huge array of complex waveforms

using a relatively simple structure, which makes them powerful; however, they are

more conceptually challenging to understand compared to subtractive methods. The

basic unit of an FM synthesizer is referred to as an operator, which generally contains

a single simple sine wave oscillator and an amplitude gate controlled by an envelope

generator. The simplest FM synthesizer consists of two operators that are connected

together so that one of the operators controls the frequency of the second operator.

The operator that does the modulating is referred to as the modulator and the oper-

ator that is modulated is referred to the carrier. Contrary to subtractive synthesis,

FM synthesizers start with simple waveforms and build up to a final timbre using

modulation. This method is more associated with west coast synthesis philosophy.

2.2.2 Control Interfaces

The control interface of a synthesizer allows a user to build up a conceptual model of

the underlying synthesis engine so that they can exert control over the sound being

generated. Most synthesizers have interface components such a knobs and sliders

that allow users to control the pitch, loudness, and timbre of a generated sound.

Keyboard type interfaces and MIDI keyboard controllers provide a direct and easily

understood method for controlling pitch for those who are familiar with Western music
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traditions. Volume controls also provide a relatively direct method for controlling the

loudness. The rest of the parameters on a synthesizer control interface are dedicated

to controlling the timbre. Seago [119] conducted an analysis on synthesizer interfaces

and describes three types:

1. Parameter selection on a fixed architecture

2. Architecture specification and configuration

3. Direct specification of physical characteristics of sound

Parameter selection interfaces present the user with an organization of synthesizer

modules that have been wired together in a fixed arrangement. Generally parameters

are arranged in a hierarchical or structured way so as to represent the signal flow

of the synthesizer architecture. These are the most common types of interfaces and

were the type used on some of the early commercially successful units including the

Moog Minimoog (see figure 2.2). A majority of software synthesizers emulate fixed

architecture synthesizers and many software synthesizers directly emulate hardware

interfaces.

Figure 2.2: MiniMoog. An example of a parameter selection on a fixed architecture
interface. Photo attribution [53].

Architecture specification interfaces allow the user to wire together synthesizer

modules. Modular synthesizers are a good example of these types of interfaces. Soft-

ware like VCV Rack3 provide emulations of Eurorack [67] hardware modular syn-

3https://vcvrack.com/

https://vcvrack.com/
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thesizer modules in software (see figure 2.3). Cycling 74’s Max/MSP4 and Native

Instrument’s Reaktor5 are other examples of architecture specification interfaces im-

plemented in software.

Figure 2.3: VCV Rack interface. Software synthesizer interface that emulates euro-
rack modular synthesizers. This is an example of an architecture specification and
configuration interface. Photo attribution [105].

Direct specification interfaces make an attempt to allow the user to interact with

the sound itself, as opposed to interacting with a conceptual model of a sound engine.

A visual representation of sonic material is presented, typically as the time-domain

waveform or a representation of the frequencies. Users are able to draw-in and shape

the output sound through this visual interface. This type of interaction can be chal-

lenging to use due to the complex relationship between the visual representation of

a sound and its perceptual quality. Some software synthesizers provide users a form

of direct specification within a larger more traditional architecture: Xfer Records

Serum6 allows users to draw in custom waveforms for wavetables and Izotope Iris7

has a visual interface to draw in the frequencies of a spectral filter, shown in 2.4.

4https://cycling74.com/products/max
5https://www.native-instruments.com/en/products/komplete/synths/reaktor-6/
6https://xferrecords.com/products/serum
7https://www.izotope.com/en/products/iris.html

https://cycling74.com/products/max
https://www.native-instruments.com/en/products/komplete/synths/reaktor-6/
https://xferrecords.com/products/serum
https://www.izotope.com/en/products/iris.html
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Figure 2.4: Izotope Iris. A sample-playback synthesizer plugin with a visual interface
that allows users to draw in frequencies.

Skeumorphism

A common trend in software synthesizer control interface design is the use of skeumor-

phism. Skeumorphic interfaces are computer user interfaces that attempt to directly

mimic their real-world counterpart. Development of these types of interfaces has

become common in audio, partly due to nostalgia of analog audio gear [129]. The

Arturia Mini V8 is an example of a software synthesizer plugin that utilizes skeumor-

phism. The Mini V emulates the previously mentioned Moog Minimoog. Figure 2.5

shows a screenshot of the Arturia Mini V, refer back to figure 2.2 to see the simi-

larities. Many software synthesizer plug-ins use skeumorphic interfaces, despite the

ability for developers to create more nuanced and flexible user interfaces using com-

puter graphic user interfaces (GUIs). Researchers have begun to question whether or

not these skeumorphic interfaces enhance or hinder usability of audio software [86].

2.3 Synthesizer Programming

When trying to obtain a particular sound using a synthesizer, users generally have two

options: they can try to build up the sound from scratch by adjusting parameters, or

they can hope that someone else has gone through that process for them and search

through a database of presets to find a sound that fits their criteria. Many users use

8https://www.arturia.com/products/analog-classics/mini-v/media

https://www.arturia.com/products/analog-classics/mini-v/media
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Figure 2.5: Arturia Mini V. A software synthesizer plugin emulation of the classic
Moog Minimoog synthesizer. The user interface replicates the hardware version as
closely as possible, an example of skeumorphic design.

a preset as a starting point and then manually adjust parameters to reach a desired

sound [79]. The act of programming a synthesizer refers to the process of manually

adjusting parameters, whether from scratch or using a preset as a starting point. Syn-

thesizer programming is not an easy task, requiring a strong technical understanding

of the particular synthesizer. Carlos and Tomita were masters at programming rich

sounds that enhanced their music, and is one of the reasons their work achieved crit-

ical acclaim [70]. Specific techniques for programming synthesizers have lead to the

creation of sounds that have defined genres of music, especially in electronic music,

such as the “wobble bass” characteristic of Dubstep and or “squelchy” synth lines of

Acid House tracks.

2.3.1 Challenges

The difficulty of synthesizer programming was identified in 1979 by James Justice

[74]. Justice identified the complexity of real-world sounds and how challenging it

is to specify synthesis parameters to recreate sounds in a satisfying way. Richard

Ashley later pointed out that the difficulty of synthesizer programming is “due to the

conceptual distance many musicians find existing between their intuitive notions of

timbres and the control of synthesis parameter” [5]. In more recent work, Pardo et al.

also describe the challenges of working with audio production tools as being related

to the conceptual distance between intuitive spaces and control parameters.
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Conceptual Spaces of Synthesizer Programming

There are three conceptual spaces that a user must navigate when using a synthe-

sizer: 1) the parameter space, 2) the perceptual space, and 3) the semantic space.

The parameter space represents the control interface and technical aspects of synthe-

sizer programming, e.g. the specific value in Hertz of a filter cutoff. The perceptual

space is related to the actual sound of a synthesizer and the semantic space is related

to how one would describe the sound, e.g. that sound is “bright” or “gritty”. When

programming a synthesizer, a user must learn to relate between the low-level param-

eter space and the high-level perceptual / semantic spaces. The relationship between

the low-level and high-level spaces is often complex. This complexity is responsible

for the “conceptual distance” that Ashley was referring to [5]. Figure 2.6 shows an

updated version of the synthesizer diagram from 2.1 with the conceptual distance

between the parameter space and the perceptual space. Users must translate desired

auditory changes (the perceptual space) to modifications in the control interface (the

parameter space).
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Figure 2.6: Updated figure of the components of a synthesizer (from figure 2.1) show-
ing the conceptual distance between the parameter space and the perceptual space
that the user must translate between.
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Specifying Timbre

Perception of musical tones can be described as being comprised of three dimensions:

pitch, loudness, and timbre. Synthesizers typically have controls for specifying all

three of these dimensions. Pitch and loudness are uni-dimensional and have relatively

simple mappings to parameters [119]. Therefore, the vast majority of parameters,

which can be over hundred, are used to specify timbre. This means that the core of

problem of synthesizer programming resides in the mapping between the perceptual

and semantic spaces of timbre and the space of synthesizer parameters.

Following this, developing a good understanding of how timbre is defined would

be a good place to begin to learn how to build more intuitive synthesizer controls.

Unfortunately, we are at once faced with a challenge. The ANSI definition describes

timbre as the attribute of auditory sensation that allows one sound be distinguished

from other sounds at the same pitch and loudness [4]. This definition doesn’t tell

us very much about what timbre is, as opposed to what it is not. Understanding

precisely what musical timbre is has presented itself as challenging problem [81] and

significant research has been conducted to try to answer this. McAdams identifies that

timbre is a purely perceptual quality of sound and provides a review of the subject

[91]. In early research on musical timbre, Grey described timbre as being multi-

dimensional and introduced the concept of a three dimensional Timbre Space [51].

Risset and Wessel explore timbre in the context of sound synthesis and emphasize

the spectro-temporal representation of sound for understanding timbre [109]. This

conception of timbre stresses the importance of the temporal aspects of sound and

how the various frequency components of a sound evolve over time to our perception

of timbre. More recent research based on neuroscience is moving away from the idea

that timbre comprises a set of unique dimensions, but is instead a complex high-

dimensional quality that must be taken as a whole [91].

All this is to say that deriving a concrete definition for timbre in the context of an

audio synthesizer is a complicated problem. The intractable nature of the problem is

one of the main reasons that the conceptual distance between the perceptual / seman-

tic space of a synthesizer and the parameter space is so large. Defining parameters in

technical terms based on their relation to the synthesis engine is a much more precise

and concrete way to design a control interface, so it is not surprising that is what

the vast majority of synthesizer developers do. Unfortunately, this means that users

are stuck with learning the technical domain language of a particular synthesizer and
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learning to relate that to their own perceptual / semantic conception of the associated

audio output.

Impediments of Synthesizer Programming

Gordan Kreković recently conducted a study with synthesizer users that provides

insight into attitudes towards synthesizer programming [79]. 122 individuals partic-

ipated in that study, which consisted of answering questions related to their experi-

ences with synthesizers. A majority of users were very experienced with synthesizers,

71% had ten or more years of experience, and only 2.7% were novice users, having

less then a few months of experience. Kreković identified four impediments of syn-

thesizer programming and asked the participants how much they agreed with each

impediment:

1. it can be time consuming;

2. it can be a distraction from focusing on music;

3. it can be difficult and non-intuitive to learn to use a particular instrument;

4. it rarely leads to desirable results.

Most participants agreed with statements 1-3 and disagreed with statement 4, how-

ever, participants with less experience were more likely to agree with statement 4.

This indicates that users with more experience programming synthesizers more often

felt that they were able to achieve desirable results. The fact that most participants

agreed with statements 1-3, especially given that the majority are highly experienced

synthesizer users, indicates the extent of the challenges associated with synthesizer

programming. Even after ten years of experience, users still feel like synthesizers can

be difficult and non-intuitive to use. When given the opportunity to write about their

experiences in a more open-ended way, participants generally reported on difficulties

with user-interfaces, learning specific synthesizers, limited features, and the creative

process.

Differences between Synthesizers

As mentioned earlier, there are a large number of different approaches to synthesis,

and even within a particular synthesis type (e.g., subtractive or FM) there could be

a nearly infinite number of variations. This is reflected by the hundreds of different
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software synthesizers that are currently commercially available on websites like KVR9.

Some methods such as subtractive synthesis have parameters that are more intuitively

understood, whereas methods like FM synthesis “may be viewed as essentially an

exploration of a mathematical expression, but whose parameters have little to do

with real-world sound production mechanisms, or with perceived attributes of sound”

[118]. These challenges and their affect on synthesizer programming is summarized

in one of the responses from Kreković’s study:

Different sorts of synthesis require different background knowledge, most of
which have steep learning curves that are at least partially exclusive. In other
words, there is an enormous investment of time to deeply learn how the different
forms of synthesis work. This learning is a prerequisite to effective use of
synthesizers.

2.3.2 Opportunities

Based on the pervasiveness of the identified challenges and complexities associated

with synthesizer programming, there is opportunity for development of methods that

support both novices and experts. In fact, research into approaches that help bridge

the conceptual gap between the perceptual / semantic and parameter spaces of syn-

thesizers has been ongoing for over 40 years now. This research broadly falls under

the umbrella of automatic synthesizer programming and will be reviewed in-depth in

the next chapter.

To inform future work in this area, Kreković asked participants to rate their

perceived helpfulness of four proposed systems based on approaches from previous

work. The systems proposed were: 1) a system that generates random presets within

a category, 2) a user provides a description of a the desired sound and a preset is

generated for them, 3) a user provides an example sound and the system generates a

presets to sound similar, and 4), more intuitive interactive user interface. Participants

thought that proposed systems three and four would be helpful and systems one and

two would be slightly helpful.

9https://www.kvraudio.com/plugins/softsynth-virtual-instruments

https://www.kvraudio.com/plugins/softsynth-virtual-instruments
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2.4 Summary

This chapter provided an overview of audio synthesizers and the task of synthesizer

programming, which involves manually adjusting parameters to achieve a desired

sound. A brief history of the evolution of synthesizers was provided, starting with

analog synthesizers and leading up to software synthesizers that are implemented as

audio plugins that work directly within modern digital audio workstations. The core

of any synthesizer is the synthesis engine, which generates audio using a variety of

different possible techniques. Users can control the synthesis engine through a control

interface by modifying a potentially large number of parameters. The majority of this

process of adjusting parameters, which is referred to as synthesizer programming, is

related to the specification of timbre. Three conceptual spaces are involved in the

process of synthesizer programming: the perceptual space, semantic space, and pa-

rameter space [102]. The perceptual and semantic space are higher level and are more

directly understood by humans, whereas the parameter space is technical and relates

directly to a particular synthesis algorithm. The distance between the perceptual /

semantic space and the parameter space is large and leads to difficulties in learning

how to use synthesizers effectively. The affect of these challenges was reflected by

users in a recent user study [79] and opportunities for improvement to current syn-

thesizer programming paradigms was identified. Automatic synthesizer programming

has developed to address the challenges associated with synthesizer programming. An

overview of automatic synthesis programming is provided in the next chapter.
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Chapter 3

Automatic Synthesizer

Programming

In the previous chapter, some of the specific challenges in synthesizer programming

were identified along with the desire among synthesizer users for improved user inter-

faces and supportive tools. The field of automatic synthesizer programming emerged

from the desire to solve these challenges and to find more intuitive answers for the

question “How do I create sound using synthesizer?” James Justice [74]

was one of the first to try to answer this question in the late 1970s. Justice’s work

used analytic methods to estimate the parameters for the FM algorithm [24]. This

is an example of inverse synthesis, or sound matching [64], where a system estimates

synthesizer parameters to replicate a target sound as closely as possible. Since then

a large volume of work in automatic synthesizer programming has been published,

exploring a variety of synthesis techniques, algorithmic methods, and user interaction

approaches. This chapter provides an overview of the field and surveys some of the

more popular methods that have been explored over the more than 40 years that

automatic synthesizer programming has been an active area of research.

To the author’s knowledge, at the time of writing there are no published works

that provide an overview of the field of automatic synthesizer programming. The

term automatic synthesizer programming was first coined by Matthew Yee-King in

work on sound matching using a genetic algorithm [149]. This term has typically

been used to refer to approaches that are focused on algorithmic techniques for sound

matching or inverse synthesis problems. For the purpose of this thesis, automatic

synthesizer programming (ASP) refers to any system that uses technology to support
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the process of programming an audio synthesizer. This includes all of the approaches

to inverse synthesis, as well as other interaction paradigms, which will be reviewed

here.

3.1 Problem Formulation

The synthesizer programming problem is fundamentally a human computer inter-

action (HCI) problem. Currently, in order to use a synthesizer, users are expected

to learn the domain language of the synthesizer they are using, as opposed to com-

municating ideas to their synthesizer in a way that suits their own creative needs.

Creativity support is an emerging field of study that is interested in addressing HCI

issues similar to this in creative domains. It is focused on the development of tools

that enable and enhance the creative output of an individual or group – both novices

and experts. Creativity support tools (CSTs) [125] span a wide array of applica-

tion domains including visual art, textiles, cooking, and music. A central question

that CSTs ask is: “How can designers of programming interfaces, interactive tools,

and rich social environments enable more people to be more creative more often?”

[125]. Reframing this question in the context of automatic synthesizer programming

research results in the following question:

How can designers of synthesizer programming interfaces enable more people
to be more creative more often?

Answers to this question are related to the conceptual distance that was iden-

tified as one of the central challenges of synthesizer programming in the previous

chapter. The distance between the perceptual/semantic space and the parameter

space of a synthesizer is large and complex, requiring users to obtain large amounts

of domain knowledge to effectively learn how to translate between those spaces them-

selves. Previous work in automatic synthesizer programming has sought to address

this conceptual gap from a variety of different angles. This chapter reviews the main

approaches to this problem.

3.2 Approaches

A typical automatic synthesizer programming system is an additional layer of ab-

straction on top of the control interface of an existing synthesizer. The goal of this
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Figure 3.1: Automatic synthesizer programming systems assist in translating between
the parameter space and perceptual / semantic space of a synthesizer. This diagram
updates figure 2.6 from the previous chapter and shows how an automatic synthe-
sizer programming system fits with an existing synthesizer and provides an intuitive
interface that maps to the parameter space.

abstraction is to help bridge the conceptual distance between the parameter space

and the perceptual and semantic space. Similar to how synthesizer control interfaces

create a mapping from the parameter space to the synthesis engine, interfaces of au-

tomatic synthesizer programming systems present an abstracted higher-level model

of the parameter space to a user and create a mapping to the parameter space. Fig-

ure 3.1 shows an updated diagram of the synthesizer user interaction model from the

previous chapter (see figure 2.6) with an automatic synthesizer programming system

inserted that assists in the translation from the perceptual/semantic space to the

parameter space of a synthesizer.

A number of different interface approaches have been explored in previous ASP

research. Pardo et al. [102] presented a framework for classifying different interaction

paradigms within audio production tools. The development of this framework was

based on how musicians and audio engineers communicate auditory concepts and

included four different types of interaction styles: 1) evaluation, 2) descriptive words,
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3) vocal imitations, and 4) exploration. Pardo et al. evaluated four different examples

of audio production software with natural interfaces that attempted to bridge the

gap between the parameter space and perceptual/semantic space. Each system was

categorized under one or more of the interaction paradigms. These categorizations

are useful for understanding the different approaches to ASP interfaces that have been

proposed in previous work. For ASP systems, two additional categories are included:

example-based interfaces and intuitive controls. There are six interaction paradigms

for automatic synthesizer programming:

1. example-based interfaces (users provide an audio example of the sound that

they want to play);

2. evaluation interfaces (users compare and evaluate results of different parameter

settings to help guide the selection process);

3. using descriptive words (semantic description of the desired result);

4. vocal imitations (users imitate the sound that they desire);

5. intuitive controls (higher-level parameters, or macro parameters, are provided

that have a complex mapping to to the lower level parameters); and

6. exploration interfaces (a number of different results are produced and provided

to the user in a way for them to explore).

An overview of each of the approaches and related work is provided in the following

sections. While previous work is introduced as a being a particular interaction style,

there is overlap between each of these styles and many applications utilize more than

one approach. For example, an evaluation-based interface that presents a user with

a set of options for ranking could also be classified as an exploration-based interface

because it supports the user in listening to a variety of different solutions. As a

result, some work may be introduced as utilizing a specific style, and then repeated

in another. Example-based approaches represent the largest portion of related work

in automatic synthesizer programming and provide technical context for the other

approaches discussed in this thesis.
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3.3 Example-Based Interfaces

The example-based paradigm for automatic synthesizer programming has dominated

the landscape of previous work. Approaches that fall into this category are typically

referred to as sound matching or inverse synthesis. The goal of these systems

is to find a parameter setting for a synthesizer that sounds as close as possible to a

given example target sound.

The first research in this vein was conducted out of a desire to develop a deeper

understanding of the complex relationship between the perceptual / semantic space

and the parameter space of a synthesizer, and to learn more intuitive methods for

synthesizer programming. In the late 70s through to the early 90s, several researchers

studied analytic methods to attempt to reverse engineer parameter settings for FM

synthesis [74, 8, 103] and non-linear synthesis [35]. In 1993, Andrew Horner conducted

one of the first synthesizer sound matching experiments for FM synthesis using an

artificial intelligence approach [64]. Horner used a genetic algorithm (GA) to search

through the parameter space and to find the optimal parameter settings to match

target instrumental sounds, including trumpets and guitars.

A typical inverse synthesis system involves the following steps: 1) the system re-

ceives a raw audio target, 2) the audio is processed and transformed into a representa-

tion for input to an algorithm, and 3) an algorithm receives the input representation

and outputs parameter settings to match the audio target.

3.3.1 Audio Representations

Generally, the first step in a typical inverse synthesis system is to convert the raw

input audio into a representation that exposes relevant features for the proceeding

algorithm. What defines a relevant feature in the context of audio analysis for syn-

thesizer programming is an open question to which a wide variety of approaches have

been explored. Most commonly, audio is transformed from a time-domain represen-

tation to a temporal-spectral representation that exposes the time-varying frequency

components of the target sound. Previous work has used the temporal-spectral rep-

resentation produced by the short-time Fourier transform [62, 61, 63, 22, 150, 7].

Audio features extracted from temporal, spectral, and temporal-spectral repre-

sentations are reviewed by Peeters [104] and have been used in inverse synthesizer

research [96, 128, 17, 13]. Mel-frequency cepstral coefficients (MFCCs) – initially

used for speech processing research – provide a compact representation of the shape
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of a spectrum, and have been used in work by Yee-King [149], Heise [56], Roth [113],

and Smith [126]. Transforms that attempt to model perceptual attributes of human-

hearing have also been explored, including log-scaled Mel-spectrograms [156], which

feature loudness and frequency scales that are more reflective of the human auditory

system.

A more recent approach to extracting audio representations is to learn them using

deep learning networks, a process called representation learning [9]. Barkan et al.

explored using a convolutional neural network to learn features directly from time-

domain audio [7]. Beyond the context of synthesizers, several researchers have built

and trained models for generating audio representations [28, 43, 40], which provide

promising options for future automatic synthesize programming approaches – both as

off-the-shelf solutions or for inspiration for learning custom representations specifically

for synthesizer sounds.

3.3.2 Approaches to Inverse Synthesis

Algorithmic approaches that have been used for parameter estimation in inverse syn-

thesis can be loosely categorized into search and modelling methods. Search algo-

rithms, which include genetic algorithms, estimate an optimal parameter settings by

performing a structured search of the parameter space. Modelling methods, on the

other hand, which have become more popular in recent years with the growth of deep

learning, attempt to model the parameter space in order to estimate parameter set-

tings. Other methods beyond search and modelling approaches that have been used

in ASP research include fuzzy logic [97, 52], linear coding [96], and query approaches

[17].

3.3.3 Search Based Methods

The most popular search methods used in automatic synthesizer programming re-

search are genetic algorithms. A genetic algorithm (GA) is a method for solving an

optimization problem using techniques based on the principles of Darwinian evolu-

tion, and is part of a broader class of evolutionary algorithms [147]. In a GA, a

potential solution (an individual) is represented by its genotype and phenotype. In

biology the genotype of an organism refers to its genetic makeup or set of genes, and

the phenotype refers to the observable properties of that organism. In the context of



29

synthesizer programming, the genotype is the set of parameters, represented by an

array of numeric values, and the phenotype is the auditory result.

During optimization with a GA, an initial set of individuals is randomly gener-

ated, and then iteratively evolved by subjecting the genotypes to a set of biologically

inspired processes including selection, breeding (cross-over), and mutation. Individ-

uals are ranked using an evaluation function that measures the fitness of a given

solution, which is calculated on the phenotype. The objective of a GA is to minimize

that value (or maximize it, depending on the problem definition). The best candi-

dates are selected for further evolution until either an optimal solution is found or a

set number of iterations has been completed.

In the case of sound matching, the fitness of a potential solution is determined

by measuring the error with regards to the phenotype of that solution and a target.

The phenotype is usually represented using a time-frequency representation of the

resulting audio; previous solutions have used spectrograms from the STFT [64, 133,

90] as well as mel-frequency cepstral coefficients (MFCCs) [149, 113, 88, 126].

Tatar et al. introduced the use of a multi-objective GA (MOGA) for synthesizer

sound matching that used three different methods for representing phenotypes: the

STFT, Fast Fourier Transform (FFT), and signal envelope [133]. Each phenotype

representation was used in a different fitness function for an objective; therefore, the

MOGA used by Tatar et al. had three objectives. In their work, they sought to

automatically program a popular, portable synthesizer called the OP-11 developed

by Teenage Engineering.

The goal of a MOGA is to find a set of pareto-optimal solutions. A solution

is pareto-optimal when no other solution is better than it for all the fitness values

and the set of pareto-optimal solutions is called the pareto-front. There are multiple

different approaches to solving the optimization problem presented by a MOGA,

popular solutions include the NSGA II [34] and NSGA III [33] algorithms. Tatar et

al.’s approach used an NSGA III.

A more recent solution proposed by Masuda and Saito [90] utilized the NSGA

II algorithm. The MOGA in their work had two objectives: the first was to mini-

mize the error between the power spectrograms of the phenotypes, and the second

was to maximize the diversity of phenotpyes as measured by a behaviour characteris-

tic, which was represented by the spectral centroid and spectral flatness. From this

dual-objective arises the concept of quality diversity : the pareto-front should con-

1https://teenage.engineering/products/op-1

https://teenage.engineering/products/op-1
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tain solutions that are not only of high-quality (close to the target), but also should

represent a diverse selection of solutions. In the context of automatic synthesizer

programming, presenting a user with a set of potential solutions based on quality di-

versity could be beneficial in the sense that it would allow them to evaluate potential

candidates from a wider range of possibilities that are close to their target.

In addition to GAs, other search-based techniques that have been used for sound

matching include Particle Swarm Optimization (PSO) [56] and Hill-Climbing [113,

87].

3.3.4 Deep Learning Methods

Deep learning is a subset of machine learning that utilizes artificial neural networks to

learn patterns in data and make predictions based on those patterns [84]. Deep learn-

ing models contain multiple layers composed of simple non-linear modules. Through

iterative training, the layers are able to extract features from raw input data and learn

intricate patterns in high-dimensional data. These multi-layer models have enabled

deep learning models to excel at complex tasks including image recognition, speech

recognition, and music related tasks such as audio source separation [57] and pitch

detection [75].

In the context of an automatic synthesizer programming inverse synthesis exper-

iment, a deep learning model accepts an audio signal as input and predicts syn-

thesizer parameter settings to replicate that audio signal. Audio signals are often

pre-processed using audio feature extraction or transformed into a time-frequency

representation, although some approaches use raw time-domain audio [7]. Models are

trained using a large set of example sounds generated from a synthesizer and use the

parameter settings that generated a particular sound as the ground truth. During

training, the loss is used to evaluate how well a model is learning and to optimize the

parameters of the model through gradient descent. The loss is calculated using a loss

function, which is computed using the error between predicted parameter settings

and the actual parameter settings (the ground truth). In deep learning, models are

grouped into discriminative models, which learn decision boundaries through observed

data, or generative models, which learn the distribution of observed data. Related

automatic synthesize programming approaches to the inverse synthesis problem have

explored both types of models, and will be reviewed in the following sections.
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Discriminative Models

One of the first works on the application of deep learning to the inverse synthesis

problem was published by Matthew Yee-King et al. [153] in 2018. The main con-

tribution of their work was an experiment that showed the effectiveness of a type of

recurrent neural networks (RNN) called long short-term memory (LSTM) networks at

sound matching on an FM synthesizer audio plugin. RNNs were developed to handle

time-series data and to receive ordered data which is successively fed into the network

architecture. As data is fed into the networks, activation states are stored internally

and help to provide temporal context in latter stages of computation. RNNs have

been particularly successful for audio generation problems [100, 40].

Yee-King et al. also experimented with additional machine learning techniques

including genetic algorithm (GA), Hill-climber, and multi-layer perceptron (MLP)

methods. They also compared two RNN models: a regular LSTM network as well as a

modified LSTM network that had a bi-directional LSTM layer and as several highway

layers. They called this network an LSTM++. Their methodology compared a set of

algorithms on a series of successively more challenging problems on the open-source

FM synthesizer Dexed2. Each problem was focused on programming a subset of the

parameters in Dexed; a larger subset was used for each successive problem. A dataset

of audio samples paired with the parameters used to generate the audio was created

for training each of the deep learning models. Mel-frequency Cepstral Coefficients

(MFCCs) were used as input for each of the models. The results were evaluated by

looking at the error between MFCCs from a target sound and a predicted sound.

Results showed that the hill-climber algorithm and the LSTM++ model performed

the best. The LSTM++ model showed significant improvements over the other deep

learning methods; however, the hill-climber performed the best on a majority of the

tasks.

Barkan et al. explored convolutional neural networks (CNNs) applied to the in-

verse synthesis problem in their work which presented InverSynth [6]. The CNN has

been used extensively for image related deep learning tasks and has recently been used

successfully in music and audio related tasks, including music genre classification [23]

and neural audio generation [37]. A key feature of CNNs is the use of shared filters

that perform convolutions and produce representations at various levels of specificity.

The shared filters allowed them to process large input data such as images and audio

2https://asb2m10.github.io/dexed/

https://asb2m10.github.io/dexed/
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with relatively few parameters compared to their fully connected counterparts.

In their work, Barkan et al. experiment with several different CNN architectures

and compare them to a few different fully-connected networks. The focus of their

research was performing inverse synthesis on a custom four oscillator FM synthesizer.

They framed the inverse synthesis problem as a classification problem and quantized

each of the 23 continuous synthesizer parameters into 16 discrete states. As input,

they experimented with spectrograms from the STFT as well as raw time-domain

audio. Because of the size of these inputs, they created different input representa-

tions for the fully-connected networks using a selection of hand-picked audio features

defined in work by Itoyama et al. [68].

Micheltree and Koike introduced an interesting approach to programming Serum3,

a popular VST wavetable synthesizer [98]. They focused on the audio effects process-

ing chain that follows the initial synthesis stage and explored using an ensemble of

CNN models that worked together to select and adjust the effects. Each model in the

ensemble was responsible for a single effects module (compressor, distortion, equal-

izer, phaser, or a reverb) and another model was responsible for selecting the ordering

of each of the individual effects modules. Micheltree and Koike hypothesized that this

approach was similar to how a human might select and program a synthesizer au-

dio effect chain. Their approach also provided insight into the intermediate steps of

programming a synthesizer that could be useful for educational purposes.

Generative Models

Esling et al. recently presented a novel application called FlowSynth that uses a

generative model based on variational auto-encoders (VAEs) and normalizing flows

[41]. Building on FlowSynth, Le Vaillant et al. also used a generative approach and

explored programming a software implementation of the Yamaha DX7 using a VAE

with normalizing flows [82]. Their work includes two important insights to the process

of training a synthesizer programming model. The first involves the dataset that was

used: they identified that previous research generated datasets of synthesizer + preset

pairs by randomly sampling the parameter space and introduced a dataset of presets

designed by humans. The second important insight related to how input is provided to

the model. Their model received a multi-channel input that consisted of six different

outputs from the same preset, played using different MIDI inputs. This factor is

3https://xferrecords.com/products/serum

https://xferrecords.com/products/serum
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important because it identifies and takes into consideration that a synthesizer can

have the exact same parameter setting, but varying the MIDI pitch and velocity that

is used to trigger the sound will result in a different sound. Using this multi-channel

input allowed the network to learn how a single synthesizer preset may respond to

different MIDI input.

3.4 Evaluation Interfaces

Evaluation interfaces for synthesizer programming allow a user to compare the results

from multiple parameter settings to help them navigate and select a desired setting.

One approach to evaluation style interfaces is through the use of interactive genetic

algorithms (IGAs) [72, 31, 152]. In contrast to the GAs introduced in the example-

based systems, the evaluation function in an IGA relies on user feedback during each

iteration as opposed to measuring error between a candidate and a target. This allows

a user to provide feedback to the system and participate in the process of finding a

sound. IGAs also facilitate exploration as they can produce a large variety of novel

examples in a short period of time and help a user explore different aspects of the

parameter space. Figure 3.2 shows an example an evaluation-based interface called

EvoSynth developed by Matthew Yee-King [152]. EvoSynth initially presents a user

with a number of randomly selected examples, which they can listen to and iterate

upon by selecting multiple examples to “breed” together. EvoSynth is web-based and

at the time of writing is still available online4.

Scurto et al. [117] explored interactive machine learning for parameter selec-

tion using a deep reinforcement learning (RL) algorithm [130]. They developed Co-

Explorer, an RL algorithm that was able to accept feedback from the user and generate

new synthesizer parameter settings in response. Co-Explorer supported both binary

feedback, e.g., “I like / don’t like that result”, as well as zone feedback which could

be used to direct the algorithm into or away from a particular zone of the parameter

space. Users were also able to guide the system using state commands such as tell the

system to move to a previous setting, enter into an autonomous exploration mode, or

allow users to take over control completely.

One of the benefits of evaluation-based systems is that they re-engage users in

the process of searching for parameter settings, as opposed to taking over control of

4http://www.yeeking.net/evosynth/

http://www.yeeking.net/evosynth/
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Figure 3.2: EvoSynth. A web-based interface for an interactive evolutionary approach
to programming a software modular synthesizer. Users are presented with a selection
of potential synthesizer patches generated using concepts inspired by evolutionary
biology. They can listen to these patches and refine them through “breeding” which
creates mixtures of multiple patches.

entire process as in the case in example-based interaction paradigms. These types

of interfaces may be beneficial, especially when the user does not have an example

sound for the system or wants to use a more exploratory approach.

3.5 Using Descriptive Words

In 1986 Ashley proposed one of the first examples of a system for programming a syn-

thesizer using semantic descriptions of the desired timbre [5]. Shortly after, Ethington

published the SeaWave system which enabled timbral control using predefined adjec-

tives [42]. SeaWave broke the timbre of a sound into three different overlapping tem-

poral segments (attack, presence, and cutoff) and mapped various adjectives within

each of these segments to parameters of an additive synthesis engine. Johnson et al.

proposed a machine learning approach to mapping timbral descriptors to parameter

settings [73]. Ross Clement collected a set of human-made Yamaha DX7 presets and

extracted keywords from the names of the presets to help develop a preset genera-

tion system based on the most commonly found keywords [25]. A novel approach to

using descriptive words proposed by Kreković et al. [80] first used a combination of

an expert-based system that mapped adjectives to numerical values for target audio
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features, and then used a GA to search for a parameter that matched those audio

features. Figure 3.3 shows a diagram of this system.

Figure 3.3: Kreković et al.’s [80] system for mapping between timbral descriptions
and synthesizer parameter settings.

In a recent study, Roche et al. explored controlling audio synthesis using eight

perceptually motivated parameters [112]. Their work used a neural synthesizer that

generated spectrograms using a variational autoencoder (VAE) regularized using per-

ceptual attributes to provide parameters based on timbral descriptions. Although this

work does not fit the traditional description of automatic synthesizer programming

since the mapping is not made to the parameter space of a regular DSP synthesizer,

their method provides a good framework for exploring perceptually motivated controls

for audio synthesis and could likely be applied to more traditional forms of synthesis.

In related work, Hayes and Saiti explored the semantic dimensions of a three oper-

ator FM synthesizer [55]. They found five major factors related to timbre semantics;

the first two factors related to the luminance-texture-mass (LTM) model of timbre

semantics [154] and the additional three factors related to clarity, pluckiness, and

rawness.
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3.6 Vocal Imitations

A method that has been shown as an effective way to communicate sound concepts

is by using vocal imitations [85], and is more effective than using a verbalization in

the case of unidentified sounds (sounds that have an unclear source). Building on

this, Cartwright et al. developed the VocalSketch dataset [18] to support research in

using vocal imitations to communicate sound concepts to computers. In synthesizer

programming, the vocal imitation approach can be viewed as a subset of the example-

based interface approaches as vocal imitations are a specific style of examples that

could be provided to a system.

Cartwright et al. proposed the SynthAssist system for exploring and finding syn-

thesizer sounds through vocal imitations [16]. Using SynthAssist a user can record

an imitation of the synthesizer sound they wish to play and be presented with a set

of possible solutions. They can then enter into an evaluation-based interaction style

where they can rate and iterate through alternative sounds until they find a match.

SynthAssist uses a data-driven approach for retrieving candidate synthesizer patches.

A large number of patches are pre-generated and a set of time-series audio features

are computed and stored in a database along with the parameter settings and audio.

Candidate synthesizer settings are queried using dynamic time warping to compare

the audio feature time-series.

In related work, Zhang et al. recently released Vroom!, a sound search engine

based on vocal imitations [157]. Vroom! builds on previous work by Zhang focused

on querying sounds by vocal imitation using CNNs [155, 156]. It implements a siamese

CNN stack that extracts audio features from the vocal imitation and sound target in

parallel and then uses a fully connected layer to compute similarity.

3.7 Intuitive Controls

The idea of developing more intuitive controls that overlay the more complex low-level

parameter space was introduced by Wessel in 1979 [146]. Wessel proposed a system

based on Grey’s timbre space [51] for controlling an additive synthesizer using two

higher-level perceptual parameters arranged on a two-dimensional grid: the vertical

axis was related to the spectral energy distribution and the horizontal axis was re-

lated to the character of the attack. Adjusting these parameters resulted in smooth

perceptual transitions. Wessel suggested a method for achieving more complex forms
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of control, based on an efficient computer language.

The descriptive word-based application proposed by Kreković that was previously

mentioned [80] also serves as an example of a system that uses intuitive controls. The

input to that system is a set of numerical values associated to timbral descriptors,

which are then used to program a synthesizer. This input can be thought of as a

set of high-level intuitive parameters that operate at the semantic space of the user;

the system is responsible for connecting these timbral parameters to the underlying

synthesizer parameters.

3.7.1 Learning Controls

Some recent works using generative deep learning models have also proposed systems

that expose intuitive macro parameters to a user [41, 112, 82]. The auto encoder

style networks that have been used for these approaches feature a latent space in the

architecture that provides a learned compact representation of the input. New exam-

ples can be generated by sampling this latent space, which is why these approaches

are called generative. Each variable within the latent space can be thought of as a

new higher-level macro parameter for a synthesizer that contains a complex and non-

linear mapping to one or more of the underlying synthesizer parameters. One of the

issues with these approaches is that the relationship between the latent parameters

and synthesizer parameters is challenging to understand, and what each of the latent

parameters does is not completely clear. Roche has taken steps towards creating a

perceptually relevant latent space by regularizing the parameters to have correlates

with timbral descriptors [112].

3.8 Exploration Interfaces

Exploration interfaces support finding potential solutions or alternatives. These types

of interfaces have been introduced in related fields including intelligent music produc-

tion to facilitate finding audio mixing parameters [19] or to help browse for audio

samples [46, 123, 139]. Many of the previously mentioned automatic synthesizer pro-

gramming tools can also be categorized as exploration interfaces. Interactive genetic

algorithms help facilitate exploration by iteratively allowing users to listen to and

evaluate sets of sounds from a synthesizer’s space of sounds [72, 31, 152]. The ge-

netic algorithm approach to inverse synthesis proposed by Masudo et al. supported
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exploration by emphasizing diversity as well as close matches in the set of possible

solutions presented to users [90]. This meant that users would be presented with a

set of diverse potential options when searching for a synthesizer setting. The rein-

forcement learning approach proposed by Scurto et al. helps to facilitate a structured

approach to parameter exploration [117].

Interfaces that visualize sounds on two or three dimensional interfaces based on

sound similarity, such as the timbre space representation proposed by Wessel [146],

provide an embodied approach to exploring synthesizer sounds by activating visual

and spatial cognition in addition to auditory cognition. The benefit of embodied

cognition to creative practices is identified by Davis et al. [32] and visualization of

synthesizer sounds based on sound similarity is explored in more detail in chapter

7. SynthAssist also uses a visual layout of synthesizer sounds to support users in

exploration [16].

Another type of interface that enables exploration are graphical interfaces, which

allow users to interpolate between synthesizer presets [48]. These systems generally

present a user with a two-dimensional interface that represents a number of different

presets for an underlying synthesis engine. Each preset is positioned in a different

location on the interface and the user can specify a point on the interface resulting

in an interpolation between presets represented at that position. Le Vaillant et al.

conducted a user evaluation that compared a users ability to recreate a sound using an

interface with four parameters that controlled a synthesis engine against a graphical

interpolation interface [83]. Expert users were able to use both interfaces equally well;

however, novice and intermediate users were able to match the sound more easily and

achieve comparable results to expert users with the interpolating interface.

3.9 Conclusions

This chapter has introduced the topic of automatic synthesizer programming and

presented a review of related work. This review framed the synthesizer programming

problem as a human-computer interaction problem and organized the body of au-

tomatic synthesizer programming research from this perspective. Six different user

interaction methods were identified and include: 1) example-based interfaces, 2) eval-

uation interfaces, 3) using descriptive words, 4) vocal imitations, 5) intuitive controls,

and 6) exploration interfaces. All of these approaches have a common goal of assist-

ing synthesizer users in navigating the disconnect between synthesizer parameters



39

and the resulting auditory result.

Example-based interfaces allow users to specify a desired auditory output from

their synthesizer by providing an example sound to an automatic synthesizer pro-

gramming interface. These methods utilize inverse synthesis or sound matching to

predict synthesizer parameters to match a target sound, and represent a large portion

of the automatic synthesizer programming literature. Evolutionary programming has

dominated the landscape of related work until recent years, which has seen a rise in

deep learning approaches. User studies have identified example-based systems as be-

ing considered useful by synthesizer users [79] and as such are a focus of the next two

chapters in this thesis. Chapter 4 describes an open-source library that was developed

as a part of this thesis to support further research and shared evaluations. Chapter 5

presents an evaluation of several deep learning and genetic algorithm based methods

for a baseline FM synthesizer inverse synthesis problem.

The emphasis placed on example-based interactions and inverse synthesis do not

necessarily indicate that these approaches are the best solutions to the synthesizer

programming problem. Evaluation and exploration-based interfaces and intuitive

controls are beneficial as they engage the user in the process of selecting synthesizer

sounds as opposed to completely taking over control, as is the case with example-based

interfaces. The use of descriptive words and vocal imitations also represent ways that

musicians already communicate music ideas to each other and could provide promising

approaches for designing intuitive user interfaces [102].

The best interface will likely vary depending on the specific user and their specific

needs for a given creative project. Some users may have a specific idea of what they

want while others may be searching for inspiration [2]. As a result, developing in-

terfaces that support a variety of different interaction styles will likely be beneficial.

Building on these concepts, a prototype for an exploration-based automatic synthe-

sizer programming interface is described in chapter 7, which was designed based on a

set of proposed design criteria derived from the fields of creativity support tools [125]

and music interaction [60].

-
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Chapter 4

SpiegeLib: A framework for

automatic synthesizer research

This chapter introduces SpiegeLib, a software framework for automatic synthesizer

programming research that was developed by the author as a component of this thesis.

SpiegeLib is an open-source software library written in the Python programming

language with the goal of promoting collaboration and reproducibility in automatic

synthesizer research. The development of the library was based on work published by

Yee-King et al. [153] that explored automatic synthesizer programming of a VST FM

synthesizer using deep learning methods. In their work they focused on the inverse

synthesis problem which has the goal of finding synthesizer parameters to match a

target sound, also referred to as sound matching. SpiegeLib is designed to support

research in inverse synthesizer and provide a platform for sharing and evaluating

methods.

Vandewalle et al. argue that reproducibility in computational science research in-

creases the impact of a work and they provide a framework for evaluating the quality

of reproducibility [142]. The aim of SpiegeLib is to provide a platform for researchers

of automatic synthesizer programming to develop, test, and share implementations

in a way that promotes reproducibility at the highest level. SpiegeLib stands for

Synthesizer Programming with Intelligent Exploration, Generation, and Evaluation

Library. The name SpiegeLib was chosen to pay homage to Laurie Spiegel, an early

pioneer in electronic music composition. Laurie Spiegel is known for utilizing syn-

thesizers and software to automate certain aspects of the music composition process.

Her philosophy for using technology in music serves as a motivation for the SpiegeLib
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software library: “I automate whatever can be automated to be freer to focus on

those aspects of music that can’t be automated. The challenge is to figure out which

is which.” [59]

4.1 Open Source Research Software

In Vandewalle et al.’s paper on reproducibility in computational sciences, they advo-

cate for providing other researchers with “all the information (code, data, schemes,

etc.) that was used to produce the presented results”[142]. Several authors of auto-

matic synthesizer programming research have started to make their work open-access

with source code available online.

Martin Roth and Matthew Yee-King developed JV stHost, a Java-based Virtual

Studio Technology (VST) plugin host that was published by Matthew Yee-King [151]

and was a component of SynthBot [149]. However, the code for SynthBot itself

was not released. Matthew Yee-King also shared the source code for EvoSynth, an

application for interactive synthesizer patch exploration [152]. A version of EvoSynth

is hosted online allowing for immediate experimentation1. Kreković et al. released

source code for their MightyKnob system [80]. Esling et al. released open-source

code and a Max4Live2 application for FlowSynth [41]. Le Vaillant et al. released

source code for their generative VAE model3 for performing inverse synthesis with

Dexed [82]. Yee-King et al. recently took initial steps towards a software framework

for automatic synthesizer programming research with the release of source code that

provides functionality for generating research datasets and a set of algorithms for

parameter estimation [153]. Along with that work they released the RenderMan4

library for programmatically interacting with VST synthesizers using the Python

programming language.

SpiegeLib builds upon this work with the goal of supporting and encouraging

reproducibility within the automatic synthesizer programming research community.

SpiegeLib is inspired by the steps that Yee-King et al. took towards creating a soft-

ware library for automatic synthesizer programming research and extends that work

with the inclusion of: an object-oriented API, base classes for customization, more

1http://www.yeeking.net/evosynth/
2https://www.ableton.com/en/live/max-for-live/
3https://github.com/gwendal-lv/preset-gen-vae
4https://github.com/fedden/RenderMan

http://www.yeeking.net/evosynth/
https://www.ableton.com/en/live/max-for-live/
https://github.com/gwendal-lv/preset-gen-vae
https://github.com/fedden/RenderMan
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robust evolutionary techniques, basic subjective evaluation, complete documentation,

and packaging and delivery. It provides a framework for authors to share implemen-

tations in an open-access way that allows other researchers to quickly recreate results

using a clearly documented set of freely-available tools.

4.2 Design of SpiegeLib

SpiegeLib is designed to be as extensible as possible to allow researchers to develop

and test new implementations of components for conducting automatic synthesizer

programming research. There are several stages in a typical automatic synthesizer

programming experiment:

1) Synthesizer configuration: a synthesizer is selected and a subset of the

parameters may be selected for estimation. For example, in work by Yee-King et al.

[153], several different experiments were conducted using successively larger parame-

ter subsets to increase the difficulty.

2) Dataset generation: for experiments requiring training, such as learning

deep learning models, a dataset of synthesized audio and parameter pairs must be

generated. Audio features may be extracted at this point too, which will be used as

input to a model.

3) Training models: deep learning models are trained using the generated

dataset.

4) Sound matching: this is the stage where parameters are estimated to match

a target sound. In the case of deep learning models this involves inferring parameters

using the trained model. For search techniques, the algorithm is run using the target

audio as input.

5 Evaluation: results of the sound matching are evaluated here. Objective

evaluation can be performed directly on the parameters as was the case in work

by Barkan et al. [7], or audio can be rendered using the predicted parameters and

evaluation carried out on the audio, which was done by both Barkan et al. and Yee-

King et al. [153]. Subjective evaluation can also be carried out at this point with a

user listening experiment.

SpiegeLib contains components to support all stages of this experimental pipeline.

Implementation details and the components of the library are detailed in the following

section.
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Table 4.1: Algorithms currently implemented in spiegelib

Algorithms in spiegelib

Audio Representations Deep Learning Estimators Search Estimators

FFT MLP [153] Basic GA

STFT LSTM/LSTM++ [153] NSGA III [133]

Mel-Spectrogram Conv6/5 [7] Objective Evaluation

MFCC Conv6s/5s2 MFCC Error [153]

Spectral1 Hybrid Estimators LSD [90]

WS-NSGA3 Parameter Error [7]
1 Spectral bandwidth, centroid, contrast, flatness, and rolloff.
2 Derivatives of the models from [7] with reduced capacity
3 Warm-start NSGA. A novel approach that uses a pre-trained deep learning model with a NSGA-
III. Introduced in chapter 5 of this thesis.

4.3 Library Components

Base classes with functionality for interacting with software synthesizers, audio fea-

ture extraction, parameter estimation, and evaluation provide an API to support

development of custom implementations that will work with other components of

the library. A number of utility classes are also provided for handling audio signals,

generating datasets, and running experiments.

SpiegeLib is written in the Python programming language and utilizes Python

packages common in research including numpy, scipy, tensorflow, and librosa.

SpiegeLib itself is a python package and is available through the Python Package Index

(PyPI) with pip5. All dependencies, except for librenderman, are python packages

available through the PyPI and will be automatically installed by pip. For more

information on installation, system requirements, and detailed library documentation,

please refer to the online documentation.6

A summary of the currently implemented algorithms is shown in table 4.1. A brief

overview of these components and the main classes and functionalities of SpiegeLib

is provided in the following sections.

5https://pypi.org/
6https://spiegelib.github.io/spiegelib/

https://pypi.org/
https://spiegelib.github.io/spiegelib/
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4.3.1 AudioBuffer

The AudioBuffer class is used to pass audio signal signals throughout the library.

It holds an array of audio samples and sample rate information. Methods of the

AudioBuffer class provide functionality for loading audio from a variety of file for-

mats, resampling, normalizing, time segmenting, plotting spectrograms, and saving

audio as WAV files.

4.3.2 Synthesizers

The SynthBase class is an abstract base class that provides an interface for creating

programmatic interactions with software synthesizers. SynthBase stores information

and contains methods required for interaction with other components in SpiegeLib,

including getting parameter lists, setting and getting patch configurations, overrid-

ing/freezing parameters, triggering audio rendering using MIDI notes, getting audio

samples as AudioBuffers, and requesting randomized patch settings. All patch set-

tings are stored as a list of parameter tuples which contain the parameter number

and parameter value. All parameter values are expected to be floating point numbers

in the range [0.0, 1.0]. No requirement is made on how underlying synthesis engines

are implemented, however, inheriting classes must provide parameter descriptions

in a class attribute during construction and must provide implementations for four

abstract class methods related to loading patches, randomizing patches, rendering

audio, and returning an AudioBuffer of rendered audio.

SynthVST is an implementation of SynthBase and provides an interface for inter-

acting with VST synthesizers. SynthVST is a wrapper for the RenderMan Python

library developed by Leon Fedden in conjunction with research by Yee-King et al.

[153].

4.3.3 Audio Feature Extraction

The abstract base class FeaturesBase provides an interface for computing audio rep-

resentations and extracting features from raw audio samples. The getFeatures()

abstract method must be overridden in inheriting classes and is where feature extrac-

tion algorithms are run. FeatureBase also includes functionality for standardizing

results. By default, data is standardization is computing by removing the mean and

scaling to unit variance. Parameters for standardization can be set based on the
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distribution from one dataset, saved, reloaded, and applied to new results to ensure

that standardization is carried out using the same parameters. Currently, imple-

mented feature extraction classes utilize the librosa library [93] and include Mel

Frequency Cepstral Coefficients (MFCC), Short Time Fourier Transform (STFT), Mel-

Spectrograms (MelSpectrogram), Fast Fourier Transform (FFT), and a set of time

summarized spectral features (SpectralSummarized).

4.3.4 Datasets

The DatasetGenerator class provides functionality for creating datasets of audio

samples, feature vectors, and associated parameter settings from a synthesizer. An

implementation of SynthBase and FeaturesBase are passed in as arguments to the

DatasetGenerator constructor. To generate a dataset, random patches for the syn-

thesizer are created and feature extraction is performed on the resulting audio. In

this way, datasets for training and validating deep learning models, as well as datasets

for evaluating sound matching experiments can be automatically generated. Exter-

nal datasets can also be used within SpiegeLib and the AudioBuffer class provides

support for loading folders of audio samples for processing.

4.3.5 Estimators

All parameter estimation classes implement the EstimatorBase abstract base class.

EstimatorBase is a minimal base class with one abstract method, predict(), that

has an optional input argument. Implementations of estimators are split into deep

learning approaches and other approaches including evolutionary algorithms. The

included algorithms do not represent a comprehensive set of methods for automatic

synthesizer programming research but are meant to cover common methods informed

by previous work. Ten estimators are currently implemented and the author plans to

add more in the near future including: a hill climbing optimizer [153], a particle swarm

optimizer [56], a 1D CNN for raw audio input [7], and recent generative approaches

[41, 82].
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4.3.6 Deep Learning Estimators

All deep learning models are implementations of the TFEstimatorBase abstract

base class which utilizes the tensorflow7 and keras8 machine learning libraries.

TFEstimatorBase implements EstimatorBase and provides wrapper functions for

setting up data for training and validation, training models, running predictions,

and saving and loading model weights. While these methods are designed to help

in handling of data typical to a synthesizer parameter estimation problem, all meth-

ods for a tf.keras.Model can be accessed directly from the model class member.

Classes that inherit from TFEstimatorBase define models in an implementation of

the buildModel() method which is automatically called during construction in the

base class. This allows new models to be quickly designed, switched out, and com-

pared with minimal effort.

The currently implemented deep learning models are based on prior work, specif-

ically on work on Recurrent Neural Networks by Yee-King et al. [153] and work on

Convolutional Neural Networks (CNN) by Barkan et al. [7]. Two modified CNN

models with reduced capacity are also included (Conv6s and Conv5s). These models

were created during the experiments conducted in chapter 5 and were found to result

in more stable training for synthesizers with less parameters. For a full listing of

deep learning models implemented, see table 4.1. An example code listing of sound

matching using a trained LSTM model is shown in figure 4.1.

To save training and validation progress, the TFEpochLogger class can be passed

in as a callback during model training. TFEpochLogger stores training accuracy and

loss, and validation accuracy and loss over training epochs in a dictionary object

which can be plotted after training.

4.3.7 Search-based Estimators

Two search-based estimators are currently implemented and utilize the DEAP python

library [45]. A basic GA (BasicGA) is included as well as a multi-objective non-

dominated sorting genetic algorithm III (NSGA3). Both GAs require feature extrac-

tion objects, or a list of feature extraction objects in the case of the multi-objective

algorithm, which are used in the GA evaluation function.

7https://www.tensorflow.org
8https://www.tensorflow.org/guide/keras

https://www.tensorflow.org
https://www.tensorflow.org/guide/keras
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1 import spiegelib as spgl

2 import spiegelib.estimator.TFEstimatorBase

3

4 # Load VST and set parameters from JSON file

5 synth = spgl.synth.SynthVST('./Dexed.vst')

6 synth.load_state('./dexed_simple_fm.json')

7

8 # MFCC Audio Feature Extractor

9 ftrs = spgl.features.MFCC(normalize=True)

10

11 # Load saved normalization parameters

12 ftrs.load_normalizers('./normalizers.pkl')

13

14 # Load LSTM model from saved model file

15 lstm = TFEstimatorBase.load('./fm_lstm.h5')

16

17 matcher = spgl.SoundMatch(synth, lstm, ftrs)

18

19 target = spgl.AudioBuffer('./target.wav')

20 output = matcher.match(target)

21 output.save('./lstm_predicted_audio.wav')

Figure 4.1: Example of SpiegeLib performing a sound match from a target WAV file
on a VST synthesizer. A pre-trained LSTM deep learning model is used with MFCC
input.

4.3.8 Hybrid Estimator

A parameter estimation technique that is introduced as a part of this thesis is also

included in SpiegeLib. This estimator uses a pre-trained deep learning network dur-

ing the initial population generation for an NSGA-III algorithm. The goal of this

approach, which is explored in more depth in the next chapter, is to provide a warm

start for the genetic algorithm search with the intention of enabling it find a suitable

solution in less generations. As such, this estimator is called a Warm-Start NSGA-III,

or WS-NSGA3 (WSNSGA3).

4.3.9 Evaluation

Objective evaluation of results can be carried out by measuring error between audio

samples. EvaluationBase is an abstract base class for calculating evaluation metrics

on a set of target and prediction data. A list of target values and lists of predictions

for each target are passed into the constructor. EvaluationBase provides functional-

ity for calculating statistics on results, saving results as a JSON file, plotting results



48

Figure 4.2: Interface for the basic subjective evaluation test using BeaqleJS. This is
a MUSHRA style test. Results from four different estimators are being compared. A
hidden reference is also included in the test items. The user must rank the quality of
each test item against the reference (target used for inverse synthesis).

in histograms, and calculating metrics including mean absolute error, mean squared

error, euclidean distance, and manhattan distance. Inheriting classes must implement

the evaluate_target() method which is called for each target and associated esti-

mations and is expected to return a dictionary of metrics for each estimation. The

MFCCEval class implements EvaluationBase and calculates metrics on MFCC vectors

for targets and estimations; the LSDEval class calculates the Log Spectral Distance

(LSD) between two audio files; and the ParameterEval class calculates absolute error

on each parameter separately, as well as the mean absolute error across all parameter

values.

Functionality for conducting subjective evaluation of results is provided in the

BasicSubjective class. This class accepts a set of audio files and runs a locally

hosted server that generates a simple web interface using BeaqleJS [78]. An image of

this interface is shown in figure 4.2. This runs a MUSHRA style listening test, where

stimuli are ranked in terms of match quality to a reference. For inverse synthesis

experiments, audio targets can be passed in along with a set of predictions for each

target, and a sound similarity test will be generated with options for randomizing the

ordering of targets and predictions. Results can then be saved as a JSON file.
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4.4 Future Work and Conclusion

Development of SpiegeLib is ongoing and a number of expansions to the current li-

brary are planned. First, the author would like to continue to expand the number

of estimators available and plan on integrating the following: a hill climbing opti-

mizer [153], a particle swarm optimizer [56], a 1D CNN for raw audio input [7], and

generative approaches [41, 82]. Second, the author would like to expand on the type

of interactions available such as automatic programming from vocal imitations [17]

and interactive methods. Finally, the author would like to encourage developers and

researchers from the automatic synthesizer programming community to contribute to

SpiegeLib. Information on contributing is available online.9

This chapter has introduced SpiegeLib, an open-source automatic synthesizer pro-

gramming library. SpiegeLib is an object-oriented software library that was designed

with the goal of supporting development, collaboration, and reproducibility in the

field. The library includes implementations of classes for conducting automatic syn-

thesizer programming research. These classes contain functionality for interacting

with VST synthesizers, extracting audio features, creating datasets, estimating syn-

thesizer parameters, and evaluating results. Ten implementations of deep learning and

evolutionary parameter estimation techniques based on previous work are included,

with more planned.

9https://spiegelib.github.io/spiegelib/contributing.html

https://spiegelib.github.io/spiegelib/contributing.html
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Chapter 5

Inverse Synthesis Experiment

This chapter presents an inverse synthesis experiment that was conducted to compare

several approaches that have been used in recent work. The methodology for this ex-

periment was modelled after Yee-King et al.’s study on deep learning for automatic

synthesizer programming [153], but with a simplified synthesizer configuration and a

unique set of estimators. In total, eleven different methods for inverse synthesis were

compared, including eight deep learning models [7, 153], two versions of a genetic al-

gorithm (GA) [64, 133], and a novel hybrid approach that combines deep learning and

genetic algorithms. A VST software emulation of the Yamaha DX7 FM synthesizer

called Dexed was used with a restricted subset of the parameters. While Dexed has

been used in previous work for inverse synthesis [153, 87, 82, 90], each work has used

a unique subset of parameters and sounds for their experiments. The difficulty of the

problem varies considerably depending on the number of parameters selected. In this

experiment, the author proposes a minimal subset of seven parameters to reduce the

complexity of the problem and to provide a benchmark for evaluation.

The research questions this experiment seeks to answer are the following:

• RQ1: How do deep learning approaches compare to genetic algorithms for FM

inverse synthesis?

– Are GAs able to produce competitive results when constrained to a limited

number of generations to improve efficiency?

– Can GAs be combined with deep learning approaches to improve both

efficiency and accuracy?

• RQ2: What deep learning approaches are best for FM inverse synthesis?
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– How do recurrent neural networks (RNNs) compare to convolutional neural

networks (CNNs)?

– How does the audio representation affect the deep learning models?

– Do higher resolution Mel-spectrograms afford a benefit over MFCCs?

• RQ3: Are certain synthesis parameters more easily learned? How does the

ability to predict parameters correlate with audio results?

The following section describes in more detail the methods used for this exper-

iment, including the precise configuration of the synthesizer, the dataset used for

training, and the various techniques compared. Section 5.5 describes the methods

used for evaluation and the results of this evaluation. Section 5.6 presents a discus-

sion of the results and highlights some of the challenges associated with the inverse

synthesis problem.

5.1 Synthesizer Configuration

The first step in the experiment was defining the synthesizer setup. The Dexed VST

instrument was selected for this experiment for three reasons: 1) it is an FM synthe-

sizer that is modelled closely after the Yamaha DX7 synthesizer which is both widely

used as well as notoriously difficult to program, 2) it is open-source and free to use

which supports reproducibility, and 3) it has been used in a number of previous works

on inverse synthesis [153, 87, 82, 90]. An image of the Dexed interface is shown in

figure 5.1. Dexed has 155 parameters that are available for external manipulation

and for inverse synthesis. A subset of seven of these parameters were used in this

experiment to turn Dexed into a simple two-operator FM synthesizer. In this config-

uration the second operator modulates the frequency of the first operator. A block

diagram showing the resulting synth configuration is shown in figure 5.2. The subset

of seven parameters control the amplitude envelope and tuning of the modulating

oscillator; this simple synthesizer can produce a wide range of timbres that evolve in

various ways over time based on the amplitude envelope of the modulating oscillator.

An overview of these seven parameters is provided in table 5.1.
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Figure 5.1: The Dexed synthesizer interface. Dexed is an open-source emulation of
the Yamaha DX7 FM synthesizer and was used in the experiments in this chapter

Figure 5.2: Block diagram of a two operator FM synthesizer. Dexed has six indepen-
dent operators that can be configured in various ways, however for the experiments
conducted here only the first two operators were used and were setup in this config-
uration.

5.1.1 Amplitude Envelope

Each operator in Dexed has a complex envelope generator (EG) that is used to

modulate the amplitude of that operator. The complex envelope generator has five

independent stages that are controlled by a set of parameters that affect the length

and amplitude of each stage. See figure 5.3 for a diagram this EG. The EG for the

second operator is the only EG that was used for this experiment. Five parameters

for the second operator were modifiable: Rate 1− 3, and level 2 and 3. Level 4, the

start of the envelope, was locked to zero, and level 1 was locked to one, the maximum

value. This meant that the start of the envelope always consisted of an attack starting

from zero and rising to one over a duration set by rate 1. The release portion of the
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Table 5.1: Synthesis parameters used in experiment

Parameter Description

OP2 EG RATE 1
Controls the duration of stages 1-3 of the envelope generator
applied the the amplitude of operator 2

OP2 EG RATE 2
OP2 EG RATE 3

OP2 EG LEVEL 2 Controls level of the envelope generator at stages 2
and 3, which is applied the amplitude of operator 2OP2 EG LEVEL 3

OP2 F COARSE Frequency of second operator in relation to the fun-
damental frequency of the MIDI pitch. Coarse tun-
ing is an integer ratio from 1

2
to 31. Fine tuning

allows for smaller non-integer adjustments.
OP2 F FINE

envelope was not included during audio generation so rate 4 was negligible.

5.1.2 Operator Tuning

Two parameters controlling the tuning of the second operator were also modifiable:

coarse tuning and fine tuning. The value of tuning is defined in relation to the

fundamental frequency of the midi pitch and first operator. Integer ratios produce

harmonic overtones and non-integer ratios produce more dissonant timbres.

5.1.3 Other Parameters

The remainder of the parameters were locked to values such that the first operator

would create a static sine wave with no amplitude modulation for the entire duration

of a MIDI note. All of the other operators, modulation, and effects processors in

Dexed were turned off. This meant that all the variation of possible sounds within this

synthesizer configuration were produced through varying the frequency and amplitude

of the second operator, which was modulating the first operator.

5.2 Dataset Generation

A dataset of synthesized audio paired with the parameters used to generate those

sounds was required for training the deep learning models. Creating this dataset

consisted of four steps: 1) sampling the parameter space, 2) playing a single note
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Figure 5.3: Diagram of an envelope generator in the Yamaha DX7 and Dexed. The
envelope has five independent stages. During the first three stages the envelope moves
linearly from level 4 to level 1, then to level 2, then to level 3. Each of these levels is
controllable and the length of time taken to move to each level is also definable. The
envelope is triggered by a key-on event. Once the envelope has progressed to level
3 it stays at that level until a key-off event is received, at which point the envelope
progresses back to level 4.

on Dexed with those parameters, 3) saving the audio and parameters, and 4) trans-

forming the audio into a suitable audio representation. All audio was rendered by

playing a single MIDI note on Dexed with a note value of 48 (C3 ≈ 130.81Hz) and

a length of one second. 80,000 examples were generated by uniformly sampling the

seven parameters and rendering audio for one second. As mentioned previously, the

release portion of the EG was left out, this is due to the render length and note length

being the same.

The audio and parameter values were saved and the dataset was then split into a

training and validation set with the training set containing 80% of the samples. Once

the audio dataset was created audio representations were generated for each example.

5.2.1 Audio Representations

All the deep learning models received audio that had been transformed from a time-

domain representation to a time-frequency representation. Two different represen-

tations were compared. The first was Mel-frequency cepstral coefficients (MFCCs),

which have been used by Yee-King et al. [151, 153] for previous automatic synthesizer

programming research. The second representation used in this experiment was log

Mel-Spectrograms. Barkan et al. [7] used a STFT representation in their experi-

ments with CNNs, however Mel-spectrograms provide a more perceptually relevant

frequency scaling and have been used in recent work in audio representations [28, 58].
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The MFCCs were computed with 13-bands using a frame size of 2048 and a hop

size of 1024, this resulted in 44 frames over the 1-second long input audio. To com-

pute the Mel-spectrograms, a STFT was first computed using a frame-size of 2048

samples and a hop-size of 1024 samples. Each frame of the magnitude spectrogram

was then converted to a power spectrum and projected onto a 64 component Mel-

frequency scale. The resulting Mel-spectrogram was then scaled to a log-scale, an

amplitude scaling more reflective of how the human auditory system perceives loud-

ness. Equation 5.1 shows the calculation of the log-scaled Mel-spectrogram from a

complex valued spectrogram, X, where M is a matrix of weights to project each frame

in the spectrogram onto 64 Mel-frequency bins.

Xlogmel = 10 ∗ log10(|X|2 ·M) (5.1)

Both audio representations were standardized to have zero mean and unit variance.

An example of the resulting representations computed on the same audio sample is

shown in figure 5.4. Both the MFCC and Mel-spectrogram representations show an

envelope in the signal starting at the beginning of the sound and lasting until about

0.45 seconds. The Mel-spectrogram gives a much higher resolution perspective of

the frequencies present in the signal, whereas the MFCC only captures the overall

shape of the spectral envelope and provides a much more compact representation.

Pitch information is lost with MFCCs, which was identified by Masuda et al. as

an issue for synthesizer sound matching applications [90]. However, Yee-King et al.

achieved good results using MFCCs, so they are were included for comparison to the

higher-resolution Mel-spectrograms.

5.3 Deep Learning Models

Four different models were used in this experiment. Two recurrent neural networks

(RNNs) derived from work by Yee-King et al. [153], a convolutional neural network

(CNN) derived from work by Barkan et al. [7], and a baseline multi-layer perceptron

(MLP) network, also from Yee-King et al. [153]. Two versions of each of these models

was created and optimized for either the MFCC or the Mel-spectrogram representa-

tion input. Therefore, eight models were trained in total. All models output floating

point value estimations for the seven synthesizer parameters. Because these output
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(a) MFCC (b) Mel-Spectrogram

Figure 5.4: Audio representations generated for a single audio example in the dataset.
The left figures shows a 13-band MFCC, and the right shows a log-scaled 128-band
Mel-Spectrogram.

values can be any 32-bit floating point number (outputs are clipped to a [0−1] range),

this means that the models are solving a regression problem. The loss function used

during training was the mean squared error (MSE) between the target parameter

values y and the predicted parameter values ŷ. The MSE is calculated as follows,

where N is the number of parameters:

`(y, ŷ) =

∑
i∈N (yi − ŷi)2

N
(5.2)

Ideally the loss would be calculated on audio produced by Dexed using the esti-

mated parameters, however there are currently no available solutions for rendering

audio using VST instruments within a deep learning model training loop. Recent

work by Ramı́rez et al. presented a solution for including audio effect plugins within

a deep learning network [107], which could be modified for VSTis, however that is

left for future suggested work.

Models were trained using an Adam optimizer [76] and hyperparameters for each

model were optimized using a Tree-structured Parzen Estimator (TPE), which has

been shown to be an effective method for hyperparameter selection [10]. Early stop-

ping was used during training for all models; this halted training if the validation loss

stopped decreasing for over ten epochs.

The following subsections describe each of the models that were included in this

experiment. To find specific details on the implementation of each model see appendix

A and for details on the hyperparameters used for training each model see appendix

B.
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5.3.1 Multi-Layer Perceptron

Multi-Layer Perceptron (MLP) models, also referred to as a feedforward neural net-

work, were the first and most simple types of neural networks. They contain one or

more hidden layers with neurons that are connected to each neuron in the preceding

and proceeding layers. These layers are also referred to as dense layers. An MLP

was included in this experiment as a baseline model to benchmark the other models

against. The architecture for the MLP was derived from Yee-King et al. [153] and has

three hidden layers containing 256, 128, and 64 neurons respectively. Each neuron

utilizes a ReLu activation. Dropout is included after the last hidden layer.

5.3.2 Recurrent Neural Networks

Two different Recurrent Neural Networks (RNNs) derived from work by Yee-King et

al. [153] were used in this experiment:

• LSTM: The first is an RNN with three LSTM layers followed by a dropout

layer and a fully connected linear output layer. The models used with MFCC

input contained 64 units in each LSTM layer and the model used with Mel-

spectrogram input had a larger capacity with 128 units in each LSTM layer.

• LSTM++: The LSTM++ is a novel architecture proposed by Yee-King et al.

that performed the best on their sound matching experiment [153]. It features

a bi-directional LSTM layer followed by dropout, then a dense layer with an

ELU non-linearity prior to several highway layers. In this experiment, the size

of the LSTM layers and the size and number of highway layers were selected

using TPE. The models for both MFCCs and Mel-spectrograms were the same

and used LSTM layers with 128 units and seven highways layers each of size

128.

5.3.3 Convolutional Neural Networks

Barkan et al. experimented with seven different CNN models for inverse synthesis

that used a log STFT spectrogram input [7]. They found that the model with the

most capacity, a model with 6 CNN layers and 2.3M trainable parameters, performed

the best in their experiments. All the other spectrogram based models that they ex-

perimented with had 1.2M trainable parameters and between one to six convolutional
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layers. They also use strided convolutions as opposed to the more traditional max

pooling approach to downsample between layers [49].

The 6-layer and 5-layer networks proposed by Barkan et al. were implemented for

this experiment. Early tests showed that these models were prone to overfitting and

a derivative model with less capacity was developed. This model had five convolu-

tional layers with fewer filters in each of the layers to reduce the number of trainable

parameters, which was found to help mitigate overfitting.

The CNN architecture that was selected for MFCC input included batch normal-

ization between each of the convolutional layers and two fully-connected layers before

the output, each with 512 neurons and ReLu activation. The Mel-Spectrogram CNN

did not use batch normalization and had three fully-connected layers before the out-

put, each with 128 units and ReLu activation. Both the CNNs had dropout before the

fully-connected hidden layers. Figure 5.5 shows a diagram of the Conv5s architecture

used for the Mel-spectrogram input, excluding the batch normalization and dropout

layers.

Figure 5.5: Network diagram of the CNN. This model accepts a Mel-spectrogram as
input and contains five 2D convolutional layers followed by three dense layers. The
output layer is predicted synthesizer parameters.

Initial experiments showed that even the reduced capacity CNN was prone to

overfitting. An inverse time-decay learning rate scheduler was introduced in an at-

tempt to address this to allow the models to train for longer. The learning rate at

each training step was defined by the following equation:

ηi =
η0

1 + λ i
T

(5.3)
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Where ηi is the learning rate at training step i, η0 is the initial learning rate, λ

is the decay rate, and T is the decay steps. For this experiment η0 = 0.001 and T

was set to be equivalent to 25 epochs. λ = 3 for the MFCC CNN and λ = 4 for the

Mel-Spectrogram CNN.

5.3.4 Training Results

All the four models were trained with both MFCC and Mel-Spectrogram inputs,

resulting in a total of eight trained models. The MFCC models will be referred to as

MFCC-X and the Mel-Spectrogram models will be referred to as Mel-X where X is

one of MLP, LSTM, LSTM++, or CNN. All the models were allowed to train until

the early-stopping criteria was triggered. The number of training epochs ranged from

31 epochs for the Mel-LSTM to 133 epochs for the Mel-MLP. Validation loss at each

training epoch is shown in figure 5.6 and plots for all models plotted against their

respective training loss are provided in appendix C. The MFCC-LSTM and MFCC-

LSTM++ models achieved the lowest validation loss during training, ≈ 0.042. All

the MFCC versions of the models achieved better final validation loss values when

compared to their Mel-Spectrogram counterparts, although only by a small amount;

the average final loss for MFCC models was 0.044 whereas the average final loss for

the Mel models was 0.045.

(a) MFCC Models (b) Mel-Spectrogram Models

Figure 5.6: Validation loss during training for all the deep learning models.
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5.4 Genetic Algorithms

Two different GAs were used: a basic single-objective GA and a multi-objective NSGA

III. The multi-objective GA was derived from work conducted by Tatar et al. [133]

that used the algorithm to automatically tune the parameters of a Teenage Engineer-

ing OP-11 synthesizer. In the case of the GAs, the fitness is easily computed directly

on the audio rendered from Dexed. During each iteration of the algorithm, individ-

uals of the population (whose genotypes are synthesizer parameters) are rendered

using Dexed, and the phenotype is produced by generating an audio representation

from the resulting audio.

5.4.1 Fitness

In the case of the basic GA, the fitness is computed as the mean absolute error

(MAE) between 13-band MFCCs from the target and the individual. The MFCCs

were calculated using a frame-size of 2048 samples and a hop-size of 1024 samples.

MAE is calculated as follows, where N is the number of features, y is the target, and

ŷ is the predicted individual:

MAE =

∑
i∈N |yi − ŷi|

N
(5.4)

Three different metrics were used for evaluating the fitness of an individual for

the NSGA-III algorithm, MAE between: 1) a 13-band MFCC, 2) magnitude spectrum

from an FFT, and 3) a set of spectral features. The MFCCs were calculated using

a frame-size of 2048 samples and hop size of 1024 samples. The FFT was calculated

over the entire input audio, 1 second at 44,100 samples/second. For the spectral

features, five different features were calculated: centroid, bandwidth, contrast across

seven subbands, flatness, and rolloff. Each feature was calculated using a frame-size

of 2048 samples and a hop-size of 1024 samples. The time series of audio features was

summarized using the mean and variance. This resulted in a feature vector of size 22.

5.4.2 Generations

The quality of the result that can be produced by a GA is generally related to the

amount of time that the algorithm is allowed to run for. While there is no guarantee

1https://teenage.engineering/products/op-1

https://teenage.engineering/products/op-1
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that the optimal solution will be found, and the optimization may get stuck in a

local minima, allowing the the algorithm to run for longer gives a higher likelihood

of finding a quality solution. Tatar et al. allowed their NSGA-III to run for 1000

generations, which took 5 hours on a 50-core computer. The results of their method

where competitive with an experienced human sound designer.

The synthesizer programming task in their problem was much more complex than

the problem presented in this experiment. Initial experiments showed both GAs were

able to perform well when allowed to run for 100 generations with a population of

300 individuals. For the NSGA this took about 20 minutes on a late-2013 MacBook

Pro. Although this time is much better than 5hrs, this still limited the number of

target examples that could be used for evaluation.

Twenty minutes is also a long time for application that is expected to be used in

a music production context. To experiment with reducing the runtime of the GAs, a

more severely constrained test was designed. Each GA was allowed to run for only

25 generations using a population of 100 individuals. These values were selected to

significantly reduce the runtime and to validate whether competitive solutions could

still be generated. With these constraints the runtime was approximately 75 seconds

for the NSGA-III and 41 seconds for the basic GA when predicting parameters for a

1 second long target audio.

5.4.3 Mutation and Crossover

The remaining hyperparameters that control each GA are the rate of mutation and

the rate of crossover. The rate of mutation sets the likelihood that a genotype is

randomly modified during each generation. The rate of mutation was 30% for the

basic GA and 50% for the NSGA-III. Rate of crossover sets the likelihood that an

individual is combined with another individual to create a new “child” individual.

The rate of crossover for both GAs was set to 50%.

5.4.4 Warm Start Genetic Algorithm

A novel hybrid method that combines the strengths of deep learning and genetic

algorithms was developed for this experiment. Deep learning models front-load the

computational complexity during model training, which can take several minutes

to several hours, however are comparatively fast during parameter prediction (less

than 100ms for the models included in this experiment). However, deep learning ap-
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proaches have yet to achieve the same accuracy and consistency as genetic algorithms

for parameter estimation.

The method proposed here leverages the inference speed of deep learning models

to support the generation of the initial population for a NSGA-III. This gives the

the genetic algorithm a head start during optimization instead of starting with a

population of purely random solutions. Because of this, the method is called Warm-

Start NSGA or WS-NSGA for short.

To generate the initial population, parameters are first predicted using a pre-

trained model. The MFCC-LSTM++ model was selected based on results presented

in the following section. This produces a single individual for the population. Forty

nine mutated versions of this individual are generated and added to the population.

Finally, to add variation to the population another fifty random individuals are cre-

ated. The algorithm is then run exactly the same as the regular NSGA, however now

with only ten generations. This method takes approximately 30 seconds in total per

prediction.

5.5 Evaluation

Evaluation was carried out by measuring the ability of each technique to accurately

perform inverse synthesis on a set of 250 testing sounds. The same seven parameter

subset of sounds was used for the test dataset, this means that an exact match was

possible, which provided a known baseline for comparing each of the methods. Each

of the 11 different techniques were run on each of the 250 test sounds and parameters

estimated. The trained models for all the deep learning approaches were used for

estimation and inference on a single target took ≈ 70ms on a MacBook Pro. The

GAs were each run on each of the 250 target sounds, which took ≈ 5 hours using the

NSGA-III and ≈ 3 hours with the basic GA, and ≈ 2 hours using the WS-NSGA.

Audio was rendered using Dexed and the predicted parameters. The results were

evaluated quantitatively using three different metrics: 1) MFCC MAE, 2) Log Spec-

tral Distance (LSD), and 3) Parameter MAE. The first two metrics are calculated

on the audio directly and the the third on the predicted parameters. Each metric is

described in more detail below and all the results are summarized in table 5.2 and in

box plots shown in figure 5.7.
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(a) MFCC MAE

(b) Log Spectral Distance

(c) Parameter MSE

Figure 5.7: Box plots showing the objective measurements comparing each estimation
method using a 250 sample evaluation dataset for sound matching.



64

MFCC LSD Parameter

MFCC-MLP 5.9± 6.8 83.2± 12.0 0.1615± 0.0521
MFCC-LSTM 4.0± 4.9 80.1± 9.1 0.1515± 0.0579
MFCC-LSTM++ 4.1± 3.9 79.9± 10.2 0.1483± 0.0552
MFCC-CNN 4.5± 4.7 81.5± 10.0 0.1501± 0.0547

Mel-MLP 6.7± 7.1 83.1± 13.2 0.1686± 0.0499
Mel-LSTM 4.7± 5.2 80.4± 11.3 0.1524± 0.0565
Mel-LSTM++ 4.8± 4.8 81.4± 9.7 0.1513± 0.0536
Mel-CNN 5.5± 6.1 81.5± 10.9 0.1569± 0.0526

GA 4.0± 3.0 81.2± 11.3 0.2400± 0.0881
NSGA 1.4± 2.5 72.5± 27.3 0.2120± 0.0897
WS-NSGA 1.3± 1.8 72.6± 23.4 0.1511± 0.0604

Table 5.2: Summary of quantitative results for inverse synthesis evaluation. The
values in bold are the scores with the lowest mean for that metric.

5.5.1 MFCC Error

MFCC error was calculated by computing the mean absolute error between MFCCs

from a target audio and a prediction. Yee-King et al. [153] also used MFCCs to

evaluate the quality of predicted sounds, however they used the euclidean distance

between MFCCs as opposed to MAE. The MAE was used here as it showed results

in a range that was more suitable for comparison. For this evaluation, MFCCs were

calculated using a frame size of 2048 and a hop-size of 512. Figure 5.7a shows a

box plot graph comparing all the techniques using this metric, ordered by the mean.

There is quite high variance for all of the techniques and quite a few outliers with

high error, even for the best techniques. However, based on the mean error, the GAs

performed the best and the WS-NSGA was overall the best technique. Out of the

deep learning models the LSTM based models using MFCCs for input performed the

best.

5.5.2 Log Spectral Distance

The log spectral distance (LSD) is a metric that is calculated between two power

spectrums. It was used by Masuda and Saito as a fitness objective in a genetic

algorithm for inverse synthesis [90]. This metric is included to add more depth to

the audio evaluation. Masuda and Saito identified a limitation with calculating error
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between synthesized sounds using MFCCs, particularly, they highlighted the inability

of MFCCs to capture specific frequency information as opposed to just the shape of

the spectral envelope. LSD provides a more robust auditory evaluation of the results.

LSD is calculated as:

LSD(P, P̂ ) =

√√√√∑
ω

10log10

(
P (ω)

P̂ (ω)

)2

(5.5)

Where P is a target power spectrum, P̂ is the power spectrum of a predicted

sound, and ω is a frequency bin. Power spectrums were calculated using an STFT

with an FFT size of 1024 samples and a hop-size of 512 samples. The average value

of LSD over frames is used as the final metric in this evaluation. Lower values for

LSD indicate a closer match. Figure 5.7b shows a box plot graph comparing the

results. Again, the variance is quite high among all the techniques. Based on the

mean LSD, the regular NSGA-III approach performed the best, followed closely by

the WS-NSGA. The LSTM++ MFCC outperformed the basic GA based on this

evaluation.

5.5.3 Parameter Error

Parameter error measures the mean absolute error (MAE) between the parameter

values from a target and a prediction. In related work, Barkan et al. included this

metric to evaluate the distance between target and estimated synthesizer parameters,

it is included here for the same reason and to highlight the relationship between the

auditory and parameter space. Figure 5.7c shows a box plot graph comparing the

results of this evaluation. All the deep learning models outperformed the NSGA

and GA in terms of mean parameter accuracy. Interestingly, the MFCC-LSTM++

performed the best out of all the methods, even the WS-NSGA, which used the

MFCC-LSTM++ as a starting point. This means that the WS-NSGA in general

found parameters that were more different from the target parameters, but resulted

in more similar audio matches. These results highlight an important aspect regarding

synthesizer programming: poor parameter reconstruction does not necessarily mean

poor auditory results.

In addition to calculating the MAE for each target-prediction pair, the absolute

error between individual parameters was calculated. This provides insight into how

each technique handled the various parameters.
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The frequency parameters affect the distribution of harmonics in the synthesized

sound, whereas the envelope generator is related to the temporal aspect of the sound

and how the frequencies evolve over time. Results for the five parameters related to

the envelope generator are shown in table 5.3, and results for the two parameters

related to the frequency of operator two are shown in table 5.4.

Results for the EG parameter evaluation show that the WS-NSGA performed the

best in determining the rate for first and second stages of the EG, and at determin-

ing the level for the third stage. The MFCC-LSTM model was overall the best at

estimating parameters for the EG, as well as for the rate of the third stage and the

level of the second stage. All methods were most effective at determining the rate

of the first stage, followed by the rate and level of the second stage, and worst at

estimating the rate and level of the third stage. The duration of each of the first

three stages range from 0 seconds to almost a minute. The length of the note is only

one second long, so if the duration of the first stage is one second or longer, then the

second and third stages will never be reached and will not be reflected in the audio

result. This means that there are large portions of the synthesizer parameter space

that are redundant for a note of one second long. This redundancy reflects a challenge

for automatic synthesizer programming and one of the issues with determining loss

based on parameter error.

Looking at the frequency parameters, the MFCC-LSTM++ outperformed all the

other methods. This is an interesting result in light of the previously mentioned issues

identified with MFCCs and their ability to capture precise frequency values. The Mel-

LSTM++, which used Mel-Spectrograms, performed only slightly worse than the

MFCC-LSTM++. Overall, the LSTM++ models performed the best at determining

the frequency tuning and the coarse tuning was estimated more successfully than the

fine tuning for all models.

5.6 Discussion

5.6.1 Deep Learning vs. Genetic Algorithms

RQ1 sought to explore the difference between deep learning approaches and genetic

algorithms for inverse synthesis. Results show differences in terms of accuracy as

well as computational complexity. The regular NSGA-III as well as the WS-NSGA

methods outperformed all the other approaches in terms of the audio evaluation
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EG Rate EG Level
1 2 3 2 3 Mean

MFCC-MLP 0.0279 0.1048 0.2443 0.1859 0.2072 0.1540
MFCC-LSTM 0.0129 0.0544 0.2082 0.1643 0.1920 0.1264
MFCC-LSTM++ 0.0156 0.0533 0.2304 0.1670 0.1929 0.1318
MFCC-CNN 0.0200 0.0621 0.2202 0.1825 0.1911 0.1352

Mel-MLP 0.0379 0.1053 0.2618 0.2036 0.1982 0.1614
Mel-LSTM 0.0190 0.0626 0.2163 0.1811 0.1870 0.1332
Mel-LSTM++ 0.0195 0.0607 0.2241 0.1848 0.1896 0.1357
Mel-CNN 0.0203 0.0735 0.2322 0.2023 0.1998 0.1456

GA 0.0326 0.1786 0.3196 0.2125 0.2812 0.2049
NSGA 0.0095 0.0834 0.2982 0.2464 0.2221 0.1719
WS-NSGA 0.0095 0.0455 0.2283 0.1712 0.1850 0.1279

Mean 0.0204 0.0804 0.2440 0.1911 0.2042 0.1480

Table 5.3: Absolute error on envelope generator parameters, averaged over all test
items

metrics. Both these methods were constrained by the number of generations they were

allowed to run for in order to reduce the running time; the WS-NSGA was limited

to 10 generations and the NSGA-III was limited to 25. Despite these constraints,

both methods produced high quality results. Figure 5.8 shows plots of the average

minimum fitness values for each objective in relation to the generation. These plots

show that the WS-NSGA consistently started with lower fitness values in the initial

population, and was able to reach similar minimums to the NSGA-III after only ten

generations. Although, the NSGA-III on average was able to find solutions with lower

spectral error and FFT error.

To say with more certainty which approach produces the best results, a formal

listening experiment would need to be conducted. However, the fact that the NSGA-

III and WS-NSGA were consistently able to produce audio results that more closely

resemble the target in terms of both MFCCs and LSD points to the quality of these

approaches.

The GAs had an advantage because they were optimized directly on the audio

signal from the specific target, whereas the deep learning models were optimized on

the parameter values. Results from the objective metrics reflected these differences,

the deep learning models reproduced the exact parameter values more accurately.
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Operator 2 Frequency
Coarse Fine Mean

MFCC-MLP 0.0680 0.2193 0.1437
MFCC-LSTM 0.0620 0.2061 0.1341
MFCC-LSTM++ 0.0599 0.1817 0.1208
MFCC-CNN 0.0661 0.1945 0.1303

Mel-MLP 0.0747 0.2042 0.1394
Mel-LSTM 0.0605 0.2146 0.1376
Mel-LSTM++ 0.0619 0.1835 0.1227
Mel-CNN 0.0678 0.2223 0.1451

GA 0.0971 0.2622 0.1796
NSGA 0.0688 0.2196 0.1442
WS-NSGA 0.0619 0.2014 0.1317

Mean 0.0681 0.2100 0.1390

Table 5.4: Absolute error on operator two frequency parameters, averaged over all
test items

Time Complexity

The trade-off between computational complexity and accuracy is displayed by the

differences in the GA and deep learning approaches. In general the GAs produced

results with higher match accuracy, but took longer to compute solutions. There

is motivation for methods that are fast; in a music production context, automatic

synthesizer programming techniques should reduce the the time required to program

a synthesizer and reduce impediments to the creative workflow. The results obtained

with the WS-NSGA are promising and show how GA and deep learning approaches

can be combined to maximize the efficiency and accuracy of prediction.

5.6.2 Deep Learning Models

The second research question in this experiment, RQ2, sought to compare the dif-

ferent types of deep learning models used and the types of input that they used.

Results show that the RNN based models outperformed the CNN using the same

input representation. It is not surprising that the RNN models were more accurately

able to model the temporal aspects of the input sound and achieved low error on the

parameters associated with the envelope generator. RNNs are specifically designed
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(a) Spectral Error (b) FFT Error (c) MFCC Error

Figure 5.8: Fitness values at each generation for the NSGA-III and WS-NSGA meth-
ods. Shows the minimum value for an objective amongst all individuals within the
population at that generation, averaged across all 250 test samples used for evalua-
tion.

to model relationships in sequential data, such as the framewise MFCCs.

An unexpected result was that the LSTM++ model performed the best at esti-

mating the parameters associated with frequency using the MFCC input. This was

unexpected based on the comments from Masuda et al. regarding the unsuitability

of MFCCs for inverse synthesis [90]. One of the issues that was encountered when

using the Mel-Spectrogram based models is that they were challenging to train. In

early experiments many of the models began overfitting quite early when using the

Mel-Spectrograms (see appendix C figures e-h). This was also an issue with the

CNN models. Even introducing a learning rate schedule and attempting to opti-

mize the learning rate still lead to difficulties with training and overfitting. Based on

the successes that have been realized in other music and audio domains with Mel-

Spectrograms and CNNs, the author was expecting to achieve better results with

these approaches. Investigating alternative training methods and ways of using these

approaches for inverse synthesis is an area for future work.

5.6.3 Parameters vs. Audio

The last research question, RQ3, sought to explore the relationship between param-

eter error and audio error for each method. The difference between the audio metrics

and the parameter metrics shows that high error in terms of parameter values does

not necessarily mean a high error in terms of the resulting audio. The NSGA-III

method was one of the best methods in terms of auditory error, however, was the
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second worst method in terms of parameter error – every deep learning approach out-

performed it. The WS-NSGA model was in the top two for all metrics, both auditory

and parameter. This further shows that achieving low parameter error is correlated

with low auditory error, but is not a necessary condition for it.

5.7 Conclusion

This chapter presented an experiment that compared several different approaches

to inverse synthesis using a VST emulation of the Yamaha DX7 synthesizer called

Dexed. A subset of seven parameters from Dexed was used for this experiment, which

turned Dexed from a complex 6-operator FM synthesizer into a relatively simple 2-

operator FM synthesizer. This configuration was capable of producing a wide variety

of different timbres and provided a benchmark inverse synthesis task for comparing

approaches. Eleven different approaches, including eight deep learning models, two

genetic algorithms, and a hybrid approach were evaluated on a test set of sounds.

Results showed that genetic algorithms perform best in terms of match accu-

racy, but suffer from long computation time. Deep learning models are fast during

prediction, but are not as accurate at inverse synthesis as the multi-objective genetic

algorithms. A hybrid approach was introduced in this chapter that used a pre-trained

LSTM++ model during the generation of the initial population for a multi-objective

genetic algorithm. The resulting method, called warm-start NSGA (WS-NSGA), was

able to achieve similar results as the NSGA in terms of auditory accuracy in 40% of

the computation time. These results show the potential for combining deep learning

and genetic algorithms for inverse synthesis.

Amongst the deep learning methods, the recurrent neural networks outperformed

the convolutional neural networks and fully-connected network. An unexpected result

was that all the deep learning methods performed better with MFCCs compared to

Mel-Spectrograms. This points to the need for future work on determining how

the input audio representation affects network training in the context of synthesizer

sounds.

Results of the this experiment also reveal a key aspect regarding the complexity of

the synthesizer parameter space and its relationship to auditory results. Specifically,

the results showed that there is redundancy in the parameter space that is conditional

on the values of other parameters. In other words, there may be more than one,

and potentially many, different parameter settings that produce the same or similar
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auditory results. This points to the complexity of the mapping between synthesizer

parameters and the associated auditory results – even in the case of the reduced

seven parameter synthesizer used in this experiment. Developing a deeper insight into

this relationship will be important for furthering research on automatic synthesizer

programming.
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Chapter 6

GPU Enabled Synthesis

In the preceding chapter, the author explored and compared various methods for

inverse synthesis, one approach to automatic synthesizer programming. These exper-

iments highlighted some of the challenges that researchers are faced with in pursuing

this work. The most daunting challenge is related to the sheer complexity of the rela-

tionship between the parameter space and the perceptual (auditory) space; depending

on the specifics of the synthesis engine and the number and type of parameters, there

is significant variability within that relationship. In addition, there is no accepted

best approach to computationally represent the perceptual space and define metrics

within that space. Complexity exists within the open question: “How similar are these

two sounds?” Can we quantify that similarity? Our ability to perform experiments

that seek to solve these challenges is hindered by additional computational challenges

associated with software synthesizers. Recent research has sought to automatically

program commercially available VST synthesizers. This approach is well-founded

considering these synthesizers represent tools that are currently being used by music

producers and sound designers. However, these synthesizers are optimized for real-

time use as opposed to use in the machine learning research where they introduce

bottlenecks [90] and difficulties with learning in gradient descent methods.

In this chapter, the author presents a GPU-enabled modular synthesizer called

torchsynth that was designed in response to the identified computational challenges.

A large-scale dataset, generated with torchsynth, called synth1B1 is also presented in

this chapter, along with two additional synthesized sound datasets generated using

existing synthesizers. These datasets, and the torchsynth synthesizer, are made pub-

licly available to support continued research in automatic synthesizer programming

and synthesizer design.
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6.1 Introduction

Machine learning progress has been driven by training regimes that leverage large

corpora. The past decade has seen great progress in NLP and vision tasks using

large-scale training. As early as 2007, Google [14] achieved state-of-the-art machine

translation results using simple trillion-token n-gram language models. Recent work

like GPT3 [15] suggests that it is preferable to do less than one epoch of training on

a large corpus, rather than multiple epochs over the same examples. Even tasks with

little training data can be attacked using self-supervised training on a larger, related

corpus followed by a transfer-learning task-specific fine-tuning step.

Name Type #hours Free Multi-modal
Diva [41] synth 12 yes parameters

FSD50K [44] broad 108 yes tags
NSynth [40] notes 333 yes tags

LibriSpeech [101] speech 1000 yes text
DAMP-VPB [66] songs 1796 no lyrics

AudioSet [47] broad 4971 no video+tags
YFCC100M [135] broad 8081 yes video

MSD [11] songs 72222 no tags+metadata
Jukebox [36] songs 86667 no lyrics+metadata

synth1B1 synth 1111111 yes parameters

Table 6.1: Large-scale and/or synthesizer audio corpora.

Unfortunately, audio ML progress has been hindered by a dearth of large-scale

corpora. Audio ML involves multiple epoch training on comparably small corpora

compared to vision or NLP. Table 6.1 summarizes various large-scale and/or synthe-

sizer audio corpora. For example, using AudioSet [47] requires scraping 5000 hours

of YouTube videos, many of which become unavailable over time (thus impeding ex-

perimental control). FSD50K [44], a free corpus, was recently released to mitigate

these issues, but contains only 108 hours of audio. To the best knowledge of the au-

thors, the largest audio set used in published research is Jukebox [36], which scraped

1.2M songs and their corresponding lyrics. Assuming average song length is 4:20, we

estimate their corpus is ≈90K hours.



74

6.1.1 Background and Motivation

Pre-training and learned representations

Tobin et al. [136] argue that learning over synthesized data enables transfer learning

to the real-world. Multi-modal training offers additional benefits. Images evince sizes

of objects immediately, while object size is difficult to glean through pure linguistic

analysis of large corpora [38]. Multi-model learning of audio – with video in [29] and

semantic tags in [43] – has led to strong audio representations. Contrastive audio

learning approaches like [116] can be used in multi-modal settings, for example by

learning the correspondence between a synthesized sound and its underlying parame-

ters. However, training such models is limited by small corpora and/or the relatively

slow synthesis speed of traditional CPU-based synths (Niizumi, p.c.), [90].

6.2 Main Contributions

The synth1B1 corpus and torchsynth software provide a fast, open approach for re-

searchers to do large-scale audio ML pre-training and develop a deeper understanding

of the complex relationship between the synthesizer parameter space and resulting

audio. A variety of existing research problems can use synth1B1, including:

• Perceptual research into audio, such as crafting auditory distance measures and

inferring timbre dimensions. [140]

• Inverse synthesis, i.e. mapping from audio to underlying synthesis parameters.

[153, 41]

• Inferring macro-parameters of synthesizers that are more perceptually relevant.

[41, 132]

• Audio-to-MIDI. [54]

• Imitation of natural sounds with established synthesis architectures.

Researchers can also use the synth1B1 corpus to arbitrage innovations from adjacent

ML fields, namely: large-scale multi-modal, self-supervised, and/or contrastive learn-

ing, and transfer-learning through fine-tuning on the downstream task of interest,

particularly tasks with few labelled examples.



75

6.2.1 synth1B1

synth1B1 is a corpus consisting of one million hours of audio: one billion 4-second

synthesized sounds. The corpus is multi-modal: each sound includes its corresponding

synthesis parameters. We use deterministic random number generation to ensure

replicability – even of noise oscillators. One tenth of the examples are designated

as the test set. Researchers can denote subsamples of this corpus as synth1M1,

synth10M1, etc.

Data augmentation has been used on small-scale corpora to increase the amount

of labelled training data. As discussed in §6.1, large-scale one-epoch training is prefer-

able, which is possible using synth1B1’s million-audio-hours.

Besides sheer size, another benefit of synth1B1 is that it is multi-modal: instances

consist of both audio and the underlying parameters used to generate this audio.

The use of traditional synthesis paradigms allows researchers to explore the com-

plex interaction between synthesizer parameter settings and the resulting audio in a

thorough and comprehensive way. Large-scale contrastive learning typically requires

data augmentation (e.g., image or spectrogram deformations) to construct positive

contrastive-pairs [20, 99]. However, this sort of faux-contrastive-pair creation is not

necessary when the underlying latent parameters are known in a corresponding modal-

ity.

6.2.2 torchsynth

synth1B1 is generated on the fly by torchsynth 1.0. torchsynth is an open-source

modular synthesizer and is GPU-enabled. torchsynth renders audio at 16200x real-

time on a single V100 GPU. Audio rendered on the GPU can be used in downstream

GPU learning tasks without the need for expensive CPU-to-GPU move operations,

not to mention disk reads. It is faster to render synth1B1 in-situ than to download

it. torchsynth includes a replicable script for generating synth1B1. To accommodate

researchers with smaller GPUs, the default batchsize is 128, which requires between

1.9 and 2.4 GB of GPU memory, depending upon the GPU. If a train/test split is

desired, 10% of the samples are marked as test. Because researchers with larger

GPUs seek higher-throughput with batchsize 1024, 9 · 1024 samples are designated

as train, the next 1024 samples as test, etc. The default sampling rate is 44.1kHz.

However, sounds can be rendered at any desired sample rate. Detailed instructions

are contained at the torchsynth URL for the precise protocol for replicably generating

https://github.com/torchsynth/torchsynth


76

synth1B1 and sub-samples thereof.

6.2.3 Questions in Synthesizer Design, and New Pitch and

Timbre Datasets and Benchmarks

When generating synthesized datasets, one needs to sample the parameter space.

Typically this is achieved through näıvely sampling parameters uniformly and ren-

dering the resulting audio. Due to the complexity of the parameter space and inter-

action between parameters, this may lead to a large number of redundant, extreme

frequency, and/or unnatural sounds. We propose several new open challenges in syn-

thesizer design, specifically focusing on the task of designing parameters and sampling

them, including:

• How do you measure the perceptual diversity of a synthesizer’s sounds? How

do you maximize it?

• How do you tune a synthesizer to imitate existing synthesizers? Is there a way

to sample the parameters so the resulting audio sounds like a human-designed

preset?

In §6.6 we demonstrate a principled approach to attacking these tasks. The main

research barrier to solving these tasks is the lack of an automatic, perceptually-

relevant auditory distance measures. To evaluate existing auditory distance measures,

we devise two new evaluation methodologies and concurrently release timbre and

pitch-datasets, each representing 22.5 and 3.4 hours of audio respectively, for the

following open-source synthesizers: a DX7 clone and Surge, as DOI 10/f7dg and

DOI 10/f652, respectively. These datasets represent “natural” synthesis sounds—i.e.

presets designed by humans, not just a computer randomly flipping knobs—which

we use in two ways: a) New benchmarks for evaluating audio representations. b)

Evaluating the similarity of different sound corpora.

6.3 Design Methodology

6.3.1 Synth Modules

torchsynth’s design is inspired by hardware modular synthesizers which contain in-

dividual units. Each module has a specific function and parameters, and they can

https://github.com/bwhitman/learnfm
https://surge-synthesizer.github.io/
https://zenodo.org/record/4677102
https://zenodo.org/record/4677097
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Figure 6.1: torchsynth throughput at various batch sizes.

be connected together in various configurations to construct a synthesizer. There are

three types of modules in torchsynth: audio modules, control modules, and param-

eter modules. Audio modules operate at audio sampling rate (default 44.1kHz) and

output audio signals. Examples include voltage-controlled oscillators (VCOs) and

voltage-controlled amplifiers (VCAs). Control modules output control signals that

modulate the parameters of another module. For speed, these modules operate at a

reduced control rate (default 441Hz). Examples of control modules include ADSR

envelope generators and low frequency oscillators (LFOs). Parameter modules simply

output parameters. An example is the monophonic “keyboard” module that has no

input, and outputs the note midi f0 value and duration.

To take advantage of the parallel processing power of a GPU, all modules render

audio in batches. Larger batches enable higher throughput on GPUs. Figure 6.1

shows torchsynth’s throughput at various batch sizes on a single GPU. GPU memory

consumption u 1216 + (8.19 · batch size) MB, including the torchsynth model. The

default batch size 128 requires ≈2.3GB of GPU memory, and is 16200x faster than

realtime on a single V100 GPU. A batch of 4 of randomly generated ADSR envelopes

is shown in Figure 6.2.

6.3.2 Synth Architectures

The default configuration in torchsynth is the Voice, which is the architecture used

in synth1B1. The Voice comprises the following modules: a Monophonic Keyboard,

two LFOs, six ADSR envelopes (each LFO module includes two dedicated ADSRs:

one for rate modulation and another for amplitude modulation), one Sine VCO, one
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Figure 6.2: Batch of four randomly generated ADSR envelopes. Each section for one
of the envelopes is labelled.

SquareSaw VCO, one Noise generator, VCAs, a Modulation Mixer and an Audio

Mixer. Modulation signals generated from control modules (ADSR and LFO) are

upsampled to the audio sample rate before being passed to audio rate modules. Figure

6.3 shows the configuration and routing of the modules comprised by Voice.

While the Voice is the default architecture of torchsynth 1.0, any number of

synth architectures can be configured using the available modules. For example,

a 4-operator frequency modulation (FM) [24] synthesizer inspired by Ableton Live’s

Operator instrument is currently in development.

6.3.3 Parameters

Module parameters can be expressed in human-readable form with predetermined min

and max values, such as 0 ≤ midi f0 ≤ 127. These human-intepretable values are used

by the DSP algorithms of each module. Internally, parameters are stored in a corre-

sponding normalized range [0, 1]. synth1B1 parameters are sampled uniformly from

the normalized range. However, there is potentially a non-linear mapping between

the internal range and the human-readable range. Besides the fixed min and max

human-readable values, each parameter has hyperparameters “curve” and “symme-

try” that determine how internal [0, 1] values are transformed to the human-readable

values. The curve can specify a particular logarithmic, linear, or exponential sam-

pling approach, e.g. to emphasize higher or lower values. Symmetric curves, which

alternately emphasize the center or edges of the distribution, are used for parameters

https://www.ableton.com/en/packs/operator/
https://www.ableton.com/en/packs/operator/
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such as oscillator tuning where the default value is 0 and can take on a range of both

positive and negative values. An example set of non-linear curves is shown in Figure

6.4.

In the authors’ nomenclature, a particular choice of hyperparameter settings,

which correspond to random sample space of markedly different sonic character, are

called nebulae. The initial Voice nebula was designed by the authors based upon

intuition and prior experience with synthesizers. We experiment with tuning the

hyperparameters of Voice to generate different nebulae in §6.6.
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6.4 Evaluation of Auditory Distances

The authors seek to quantify the diversity of sounds that can be generated with

torchsynth, given a particular nebula; or similarly, to quantify to what extent a

certain nebula can capture the variability of sounds in another dataset. In order to

do so, we first need a reliable measure of similarity or dissimilarity between pairs of

sounds, also known as an auditory distance.

Auditory distances have many applications in audio ML. They provide the basis

for quantitative evaluation and optimization criteria. In a sense, the auditory dis-

tance measure is the “ear” of a model. For example, auditory distances can be used

to evaluate the similarity of two sounds that were generated by different synthesis

engines. By extension, a well-tuned distance could estimate whether two sounds are

perceptually indistinguishable to human listeners. For example, a 4-second sinusoid
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at 30 kHz, when compared to 4-seconds of silence, should have an auditory distance

of zero if the distance is properly tuned to the typical range of human hearing. Like-

wise, two random instances of white noise should have a perceptual distance of zero,

or near zero, despite their entirely different waveforms.

Auditory distances typically involve computing some multidimensional represen-

tation of a sound, then computing a distance over the representation space [137]. To

perform a controlled evaluation of auditory distances, the authors devised two ex-

periments using two new datasets. Sounds in each dataset are RMS-level normalized

using the normalize package.

Spearman in preset DCG across presets
Representation model choice mean Surge DX7 mean Surge DX7

OpenL3 [28] env, mel256, 6144 0.821 0.746 0.896 0.880 0.908 0.852
OpenL3 [28] env, mel256, 6144, normed 0.821 0.747 0.895 0.809 0.883 0.735
OpenL3 [28] music, mel256, 6144, normed 0.817 0.732 0.903 0.820 0.916 0.724
OpenL3 [28] music, mel256, 6144 0.813 0.722 0.903 0.892 0.942 0.842

Coala [43] dual ae c, normed 0.813 0.729 0.896 0.555 0.547 0.564
Coala [43] dual e c, normed 0.811 0.737 0.884 0.569 0.576 0.563

Wavenet [40] normed 0.810 0.717 0.903 0.582 0.591 0.573
OpenL3 [28] music, linear, 6144 0.808 0.722 0.895 0.874 0.943 0.805
OpenL3 [28] music, mel256, 512 0.804 0.710 0.899 0.904 0.943 0.864
OpenL3 [28] music, mel256, 512, normed 0.801 0.705 0.897 0.585 0.606 0.564
Wavenet [40] 0.789 0.675 0.903 0.835 0.893 0.777

Coala [43] dual ae c 0.776 0.658 0.893 0.748 0.756 0.740
Coala [43] dual e c 0.750 0.630 0.871 0.681 0.710 0.652

MSS [39, 127] linear+log, [4096 ... 64] 0.792 0.690 0.894 0.543 0.555 0.531
MSS [39, 127] log, [4096 ... 64] 0.786 0.689 0.884 0.542 0.566 0.518
MSS [39, 127] linear, [4096 ... 64] 0.658 0.410 0.905 0.447 0.343 0.551

Coala [43] cnn, normed 0.555 0.303 0.806 0.485 0.433 0.537
Coala [43] cnn 0.552 0.297 0.807 0.714 0.614 0.815

Table 6.2: Performance of representations on experiments defined in § 6.4.3 and 6.4.4.
Best scores, and scores within 0.002 of the best, are bold-faced. `1 distance was used
because it outperformed `2. We sort by mean spearman within a preset.

6.4.1 DX7 Timbre Dataset

Given 31K unique human-devised presets for the DX71, the authors generated 4-

second samples on a fixed midi pitch (69 = A440) with a note-on duration of 3

seconds. For each preset, we varied only the velocity, from 1–127. This dataset is

1We used this clone: github.com/bwhitman/learnfm

https://github.com/kklobe/normalize
github.com/bwhitman/learnfm
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built on the hypothesis—verified through informal listening tests—that velocity, while

carrying no timbral information itself, effects a meaningful, monotonic variation in

timbre when it is explicitly programmed into a DX7 patch. Not all DX7 patches

are velocity sensitive, and some are more sensitive than others. Sounds that were

completely identical—i.e. each sample matched with error 0—were removed from the

dataset. 8K presets had only one unique sound. The median was 51 unique sound

per preset, mean 41.9, stddev 27.4.

6.4.2 Surge Pitch Dataset

The open-source Surge synthesizer is a versatile subtractive synthesizer with a variety

of oscillator algorithms: Classic, Sine, Wave-table, Window, FM2, FM3, S&H Noise

and Audio Input. To explore another dimension of variability, in this case pitch, we

used the Surge synthesizer Python API and the 2.1K standard Surge presets. Here

we held the velocity constant at 64, and varied midi pitch values from 21–108, the

range of a grand piano. Only a small percentage of presets (like drums and sound

effects) had no meaningful pitch variation, and thus no perceptual ordering as pitch

increases. However, the inclusion of noise in many of these sounds precluded the use

of automatic filtering of perceptually indistinct sounds. Therefore, a small fraction

of presets are unclassifiable, imposing a uniform upper bound in accuracy across the

board for all auditory distances.

6.4.3 Distance Experiment 1: Timbral and Pitch Ordering

Within a Preset

In this experiment, the authors measure the ability of an auditory distance to order

sounds by timbre, or by pitch, in the DX7 and Surge datasets, respectively. In effect,

the experiment is two evaluations in parallel, run on two separate datasets.

The authors sample a random preset with at least 3 unique sounds. For each

sound s, we pick a random sound sl from this preset with a lower rank (using the

DX7 set, this would be a sound having the same pitch but a lower velocity; for the

Surge dataset this is a sound having the same velocity but lower pitch); and a random

sound sh with higher rank.

For each of s, sl and sh, we compute the distance d(·, ŝ) between this sound and all

other sounds ŝ in the dataset. While s is the sample of interest, distance measures are

https://surge-synthesizer.github.io/
https://github.com/surge-synthesizer/surge-python
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strictly non-negative. Therefore, we seek a concurrent metric to determine whether

the compared sound ŝ is “above” or “below” s. If the sound ŝ is closer to sl, we

determine the sign of the distance to s to be negative. If ŝ is closer to sh, we determine

the sign of the distance to s be positive. As a result, we have a signed distance metric

comparing the sound s to every other sound in the dataset.

This set of distances is then correlated to the ground-truth index of pitch, or

velocity (depending on the dataset). The correlation, here a Spearman rank correla-

tion, reflects the extent to which the signed distance can properly order the dataset

by variability in pitch or velocity. One limitation of this methodology for inducing

a forced ranking from simple distance is that if, say, s = 80, sl = 31, sh = 81, and

ŝ = 79, we might judge ŝ as closer to sh and thus above s. We controlled for this by

using the same choice for every auditory distance of sh and sl given s.

Formally, we estimate:

E
S∈P,s∈S,sl,sh∼S,sl<s<sh

[
ρ

ŝ∈S

(
rank(ŝ), d(s, ŝ) ·

sgn
(
d(sh, ŝ) < d(sl, ŝ

))] (6.1)

P is the set of presets, S sounds in that preset, and ρ is spearman.

6.4.4 Distance Experiment 2: Determine a Sound’s Preset

A good distance measure should have low distance between sounds generated by the

same preset. For each trial, we sample 200 different presets. We sample 2 unique

sounds from each preset. For each sound, we compute its distance against the 399

other sounds, and then compute the discounted cumulative gain (DCG) [145] of the

sound from the same preset, with binary relevance. The DCG is computed for all 400

sounds in the trial. We perform 600 trials.

In the Surge dataset, to control for the helical nature of pitch perception [120],

the second sound was always an interval of six semitones (AKA a tritone, diabolus in

musica) from the first note. This ensured that pitches were close, but avoided similar

partials due to overlapping harmonics that could be easily matched.
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6.4.5 Evaluation Results

To evaluate the perceptual similarity between two audio samples, we need a good

representation to compute distances: a) The multi-scale spectrogram distance has

been used in a variety of applications, particularly in speech synthesis [144, 148] but

also in music [12, 39, 36]; b) NSynth Wavenet [40] is a Wavenet-architecture trained

on NSynth musical notes; c) OpenL3 [28] was trained multi-modally on AudioSet

audio and video, on two distinct subsets: music and environmental sounds; d) Coala

[43] was trained multi-modally on Freesound audio and their corresponding tags.

The authors experimented with a variety of hyperparameter settings for the rep-

resentations. The best results are in Table 6.2. `1 distance was used because it gave

better results than `2 across the board. For Coala and NSynth Wavenet, normalizing

improves the spearman scores, but harms the DCG across presets. Normalization had

little effect on OpenL3. OpenL3 (music, mel256, 512) achieves the best score on DCG

across presets, and its compactness makes it an appealing choice for the remaining

experiments in the paper.

6.5 Similarity between Audio Datasets

To evaluate the similarity between two sets of audio samples X and Y , the authors

use the maximum mean discrepancy (MMD) [50]. We use the following MMD for-

mulation, assuming X and Y both have n elements:

MMD(X, Y ) =
1

nn

n∑
i,j=0

2 · d(xi, yj)− d(xi, xj)− d(yi, yj) (6.2)

MMD allows us to use our chosen distance measure—OpenL3 (music, mel256, 512)

`1—as the core distance d.

For Surge and DX7, we selected sounds with midi pitch 69 and velocity 64. We

also generated a set of 4-second samples of white-noise, and used excerpts from the

FSD50K evaluation set [44], which is broad-domain audio, trimmed to 4 seconds.

From each corpus, we randomly sampled 2000 sounds, to match the size of the smallest

corpus (Surge). We performed 1000 MMD trials, each time comparing n = 1000

sounds from one corpus to n = 1000 sounds from another, randomly sampled each

trial. To estimate the diversity within a particular corpus, we evaluated MMD over

1000 distinct 50/50 partitions of the corpus.
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MMD std corpus 1 corpus 2
4.396 0.123 white white

21.409 4.729 dx7 dx7
23.732 3.615 FSD50K FSD50K
24.130 5.251 torchsynth torchsynth
27.824 9.821 surge surge

2751.519 80.955 torchsynth surge
2884.843 67.264 surge dx7
3001.857 71.888 torchsynth FSD50K
3637.845 79.265 torchsynth dx7
4756.952 112.705 surge FSD50K
7413.105 111.897 dx7 FSD50K

13202.202 61.558 white FSD50K
16985.319 92.992 white torchsynth
18488.926 67.277 white surge
20374.929 78.886 white dx7

Table 6.3: MMD results comparing different audio sets, including the stddev of the
MMD over the 1000 trials.

Table 6.3 shows the result of average MMD computations between different audio

corpora. 0.0 would be perfectly identical. Some results are expected, whereas some

are counter-intuitive and suggest pathologies in the OpenL3 distance measure. These

results are sometimes perceptually incoherent, and suggest that existing auditory

distance measures will impede progress in automatic synthesizer design, as we will

illustrate in the following section.

• White-noise is the most similar to itself of all comparisons.

• FSD50K broad-domain sounds are, strangely, considered to have less within-

corpus diversity than torchsynth or Surge sounds. However, the variance is

high enough that it is hard to have statistical confidence in this unexpected

result.

• More troubling are low-variance estimates that torchsynth is more similar to

FSD50k than a dx7 synth. A priori, one would expect that synths would sound

more similar to each other than broad domain audio.

• As expected, white noise is the least similar to DX7 synth sounds of all corpora,

as the DX7 has no noise oscillator.
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6.6 torchsynth Hyper-Parameter Tuning

Given its highly flexible architecture, how can we guarantee the maximum diversity

of sounds within the default nebula? Similarly, to what extent can torchsynth adopt

the characteristics of a given corpus of audio? Recall from §6.3 and Figure 6.4 that

for each module parameter, the choice of scaling curve is a hyperparameter. Initial

hyperparameters were chosen perceptually and based upon prior-knowledge of typical

synth design.

In principle, we can use MMD (Equation 6.2) as an optimization criterion to tune

these hyperparameters a) to maximize sonic diversity; or b) model the characteris-

tics of another dataset. We use Optuna [1], initializing with 200 random grid-search

trials, and subsequently using CMA-ES sampling for 800 trials. In each trial, we

generate 256 random torchsynth sounds with the Optuna-chosen hyperparameters.

Hyperparameter curves were sampled log-uniform in the range [0.1, 10]. The top 25

candidates were re-evaluated using 30 different MMD trials, to pick the best hyper-

parameters. However, MMD estimates are only as good as the underlying similarity

metric (OpenL3-`1) that it uses.

For these experiments, the authors and non-author musicians conducted blinded

listening experiments of the tuned nebula and our manually-chosen nebula, and lis-

tened to 64 random sounds. Only after independent qualitative evaluation did we

unblind which nebula was which.

6.6.1 Restricting hyperparameters

Many torchsynth 1.0 Voice default nebula sounds have an eerie sci-fi feel to them. To

find the drum nebula, we used Optuna to choose hyperparameters to minimize the

OpenL3-`1-MMD against 10K one-shot percussive sounds [106]. All hyperparameters

were allowed to be tuned. We had hoped to find that OpenL3-`1-MMD would find

appropriate percussive curves.

Overall, the authors found the drum hyperparameters unpleasant to listen to.

This negative result was surprising. Sounds did not resemble percussion. There

was extreme use of high and low pitch. Low pitches were clicky and gurgly, high

pitches were painful or often inaudible. There was some nice use of LFO, but little

use of square shape, little noise, and low diversity. Perhaps wide modulation sweeps

attempted to compensate for the broadband energy in the transients of drum sounds.

The authors were curious if this negative result was due to failure of the distance
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measure, or instead a systemic limitation in the design of the torchsynth 1.0 Voice

and its parameter sampling approach. We hand-tuned the hyperparameters to create

a drum nebula, which is shared as part of our repository. While not all the sounds

produced sound like drum hits, many have a quality akin to early drum machines—

the distribution of sounds is overall much more percussion-like. We encourage the

reader to listen to this nebula, which will be available on torchsynth site.

In addition to confirming the perceptual-deafness of our distance measure, hand-

designing the drum nebula demonstrated one limitation in torchsynth 1.0: Synth

parameters are all sampled independently. Thus, one cannot construct a nebula that

samples only kicks and snares. Sampling occurs on the continuum between them.

In future work, we are interested in investigating multivariate sampling techniques,

which would allow more focused cross-parameter modal sound sampling.

6.6.2 Maximizing torchsynth diversity

The authors attempted to tune our hyperparameters to maximize torchsynth MMD,

i.e. increase the perceptual diversity of sounds generated by torchsynth itself. As

before, Optuna was used to choose hyperparameters that maximized the OpenL3-

`1-MMD and thus increase the diversity of sounds. Nonetheless, the “optimized”

nebula exhibited pathologies in pitch, favouring extremely low and high pitches. We

hypothesize that OpenL3-`1 overestimates perceptually diversity in these frequency

ranges. We performed numerous experiments restricting the hyperparameters Op-

tuna could and could not modify, such as prohibiting changes to midi f0 and VCO

tuning and mod depth. Consistently, listeners preferred our manually design nebula

to automatically designed ones in blind tests. We consider this another important

negative result. Open questions remain:

• For what hyperparameter choices is a particular auditory distance perceptually-

inaccurate?

• How do we craft an auditory distance measure that can perceptually optimize

synthesizer diversity, or similarity to an existing sound corpus?
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6.7 Open Questions, Issues, and Future Work

Many experiments in automatic synthesizer design hinge on having a perceptually-

relevant auditory distance measure. The distance measure is the artificial “ear” of

the network. OpenL3 (music, mel256, 512) `1 performed well on our quantitative

synthesizer experiments (Table 6.2), but exhibited many issues in qualitative listening

tests, in particular its insensitivity to extreme pitch and inability to model percussion.

Learning a perceptually-relevant auditory distance measure is an open research

question. Manocha et al. [89] use manually-annotated “just noticeable differences”

(JND) trials generated using active learning to induce a perceptual distance measures.

However, they only work with speech and do not include pitch variations, so their

model was inappropriate for our task.

Unknown pathologies in auditory distance measures impede researchers from per-

forming a variety of useful experiments. Most crucially, the lack of perceptually ac-

curate auditory distance measure prevented us from precisely estimating how many

perceptually different sounds are expressible by torchsynth, as well as other synthe-

sizers like Surge and DX7. By contrast, a good artificial “ear” for music opens the

door to many possible advances in synthesizer design, including:

• Estimating and maximizing the diversity of synthesizer.

• Mimicking existing synthesizers through automation.

• Inverse synthesis, transcription, and the other tasks described in §6.2.

Our negative results on automatic synthesizer design using auditory distances present

valuable challenges for the community to investigate.

Nonetheless, the potential impact (§6.1 and §6.2) of the synth1B1 corpus is un-

affected, because of its enormous size, speed, and corresponding multi-modal latent

parameters.

6.8 Future Work

torchsynth 1.0 focuses on high throughput and creating a (subjectively) perceptually

diverse synth1B1 dataset. There are a handful of improvements we want to add to

torchsynth:

• Stress-tested differentiable modules.
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• Subtractive filters.

• Additional architectures including an FM synthesizer.

• Multivariate parameter selection.

• High-throughput modules that resemble human speech.

• A standardized modular architecture for high-throughput audio effect research.

6.9 Conclusions

This chapter described synth1B1, a multi-modal corpus of synthesizer sounds with

their corresponding latent parameters, generated on-the-fly 16200x faster than re-

altime on a single V100 GPU. This corpus is 100x bigger than any audio corpus

present in the literature. Accompanying this dataset is the open-source modular

GPU-optional torchsynth package. The authors hope that larger-scale multi-modal

training will help audio ML accrete the benefits demonstrated by previous NLP and

vision breakthroughs.

The authors freely release pitch and timbre datasets based upon “natural” syn-

thesis sounds, and novel evaluation tasks on which we benchmark a handful of audio

representations. This chapter also presented several novel research questions, includ-

ing how to estimate and maximize the diversity of a synthesizer, as well as how to

mimic existing synthesizers. Additionally, this chapter outlined issues and open re-

search questions that currently impede this sort of experimental work, in particular

demonstrating negative results of auditory distance measures.
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Chapter 7

Designing an Exploratory

Synthesizer Interface

In this chapter the author introduces Synth Explorer: a prototype of an automatic

synthesizer programming interface built on top of the torchsynth synthesizer described

in the previous chapter. Synth Explorer is an interactive visual browsing interface

for torchsynth that was built with the goal of supporting both novice and expert

users in the process of navigating and developing an understanding of the vast and

complex sonic space expressed by a synthesizer. It builds upon previous research

in the area of sound visualization, and the design is informed by concepts from the

the fields of creativity support tools (CSTs) and music interaction [125, 60]. These

concepts, along with the taxonomy of automatic synthesizer programming interaction

approaches presented in chapter 3 grounds the the development of Synth Explorer

and provides a framework for the development of future systems.

Synth Explorer is designed with music producers, audio practitioners, and synthe-

sizer users in mind – all individuals who regularly require synthesized sounds for their

creative projects. Currently, users must manually program a sound, find an existing

preset, or find a pre-existing sound in a collection of samples. Challenges with man-

ually programming sounds is addressed in detail in chapter 2. Searching for presets

and pre-existing sounds typically involves browsing through items that are displayed

in a list-based user-interface. Any searching is based on filenames or semantic tagging

[77]. In conversations held by Kristena Andersen at the RedBull Music Academy [2],

music producers expressed the challenges associated with navigating large collections

of audio and their desires for improved methods for interaction. Particular emphasis
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was placed on the potential impact of tools that aid the creative process. The field of

creative music information retrieval has also had the focus of finding ways to address

the challenges of searching for sounds [65] and visual browsing interfaces have been

identified as beneficial for allowing users to navigate large collections of sounds more

efficiently than traditional list based methods [139].

The interface implemented in Synth Explorer is intended to support the efficient

navigation of synthesizer sounds, allowing users to develop a “sound palette” for their

project. Users are able to “look under the hood” of the visual interface and directly

interact with the underlying control interface for these sounds. They can make fine

adjustments to the parameter settings to refine their selected sounds as well as to gain

insight into the parameter settings that led to the resulting sound. In this way, users

can interact with the synthesis engine and control interface at a level abstraction of

that supports their position on the learning curve. The graphical interface is designed

to support novice users. While the interface includes some technical audio terms, the

drag and drop interface is modelled on an interaction modality that will be familiar to

most computer users and will allow anyone to quickly start constructing visualizations

and exploring sounds. The inclusion of the technical names will allow users to begin

to build up an understanding of the different dimensions of sound and how they relate

to the underlying synthesizer parameters.

7.1 Related Work

Exploration-based interfaces for synthesizers was reviewed in chapter 3 and visualiza-

tion of sounds based on sound similarity has been studied in depth and is reviewed

by Cooper et al. [27]. Within the field of automatic synthesizer programming, Synth

Explorer is related to the data-driven approach used by in SynthAssist [16]; all the

sounds used in Synth Explorer are pre-computed and audio features are stored in a

database. Synth sounds are then displayed on the interface based on sound similar-

ity. Looking beyond synthesizer sounds, work that is particularly relevant to Synth

Explorer is DrumSpace, a 2D visualization interface developed by Turqois et al. for

exploring large collections of drum sounds [139]. A component of their study was a

subjective evaluation that compared user experiences in browsing for drum sounds

using a traditional list-based layout of samples to 2D visual layouts. For the 2D

layouts they compared one method that automatically sorted sounds based on sound

similarity against one that organized sounds based on the filename. Users reported
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having a significant preference for for the 2D based layout, but had no significant

preference for the type of layout. Participants were able to explore a much larger

number of audio examples in a shorter period of time when using the 2D interfaces.

Turqois et al. also identified that the layout based on sound similarity caused some

confusion to the users; the layout was based on a set of audio features which had

been reduced to 2D using a dimensionality reduction technique called t-SNE [141],

because algorithms like t-SNE create complex combinations of higher dimensional

features into a lower dimensional embedding for visualization, the meaning of the

resulting dimensions used for visualization are often hard to identify. Turqois et al.

also suggest that colour could be a helpful addition to the interface. Building upon

this work, the author of this thesis conducted further experiments on the perceptual

relevance of different methods of dimensionality reduction techniques for visualizing

drum samples in 2D and identified MDS as having the highest correlation with user

similarity ranking [123]. Synth Explorer builds on these tools and leverages similar

techniques for creating 2D visualizations of synthesizer sounds.

An interesting CST that is related to the audio synthesis problem is a tool de-

veloped by Andrews for exploring and generating graphics using a 2D interface [3].

Their work used an algorithmic method for generating 2D graphics, which a user is

able to interact with to control the generation of new graphics. Because of the vast-

ness of the space of potential images that could be generated by the algorithm, the

user interface utilizes a spatial layout of images to allow the user to quickly assess a

set of possibilities which they can then use to guide the generation of further images.

While this interface was focused on the generation of images, the interaction ideology

is similar to that of Synth Explorer, which is built on top of an algorithmic audio

synthesis engine; the space of possible sounds that a synthesizer can produce is far

too vast for a user to navigate all at once, so a small random subset of that space

is initially presented and the user is then able add more sounds and hone in on a

particular result.

7.2 Design Principles

This section presents an overview of design principles, informed by the HCI fields of

music interaction and creativity support, that are intended to guide the development

of automatic synthesizer programming interfaces. These principles provide a frame-

work for designing interactions from the perspective that a synthesizer is a musical
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tool that users want to engage with in the context of a creative pursuit – whether

that is designing sounds for a film soundtrack, composing a piece of electronic music,

or simply enjoying creating sounds and playing a synthesizer. Because of the breadth

of what a creative pursuit can encompass, these principles are intended to be taken

as suggestions to help situate the design process.

7.2.1 Music Interaction

Music and Human-Computer Interaction [60], or simply Music Interaction, is the

field of research related to the use of interactive systems that involve computers for

any kind of musical activity. Music interaction not only draws heavily from other

areas of HCI research, but also responds to the needs and desires of the music com-

munity. There are unique considerations that make music interaction different from

other fields of HCI. A musical instrument is not a utilitarian tool whose development

should be ever-improved and made more efficient. Musical instruments are played;

sometimes that is the only goal. Tanaka [131] identifies that imperfections and limi-

tations of a musical instrument give an instrument character. This was reflected by

music producers interviewed by Andersen who expressed the role of serendipity and

“happy accidents” in their creative process [2], and identified this as an important

consideration for designing new music production tools. McDermott [92] identifies

the importance of engagement in musical interaction and the relation that bears to

the concept of flow. Mihaly Csikszentmihalyi coined the term flow to describe a state

of highly focused concentration that is related to experiencing an activity as being

deeply satisfying and engaging [30]. The role that the learning curve plays is crucial

to the level of engagement that a player experiences when playing a musical instru-

ment, both in the short-term and the long-term. Holland [60] concludes, “In order to

remain engaging, consuming and flow-like, activities that involve musical instruments

must offer continued challenges at appropriate levels of difficulty: not too difficult,

and not too easy.”

Automatic synthesizer programming tools can be thought of as being extensions

of a musical instrument. With this in mind, the goal should not necessarily be to

provide a perfectly optimized experience that completely takes over the task of pro-

gramming and using a synthesizer. For example, example-based inverse synthesis

approaches may play an important role in an automatic synthesizer programming

tool; however, they may only be one part of a larger interaction paradigm that pro-
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vides other opportunities for expression. The inclusion of design features that allow

for “happy accidents” to occur and unexpected use-cases to be realized can lead to

more engaging and rewarding experiences. In fact, there is a rich history in music

technology of musicians using devices in an incorrect way with great success. The

Roland TB-303 is an excellent example of this: the synthesizer was a failure in terms

of its initial goal of generating realistic bass sounds. However, its synthetic “squelchy”

tones resulted in it leading a successful second life as an electronic dance music in-

strument [143]. It is impossible to design an interface with the unexpected use in

mind; however, leaving enough room for features to be used in unexpected ways is a

method to encourage long-term engagement. In addition, related to the concept of

engagement is the consideration of the role that the learning curve plays while using

a synthesizer. Building in interactions that support users as they progress along the

learning curve will also encourage both short-term and long-term engagement.

7.2.2 Creativity Support

Related to music interaction is the study of creativity support tools. Design guidelines

borne out of research in creativity support tools is relevant to the design of tools that

support synthesizer users. Shneiderman [125] outlines a set of design principles for

developing creativity support tools which include the following: support exploratory

search; enable collaboration; provide rich history keeping; and design with low thresh-

olds, high ceilings, and wide walls. Davis et al. focus on the role that CSTs play in

supporting novices engaging in creative tasks and the relationship that the environ-

ment plays in creativity [32]. In their work, the authors identify two types of novice

users: domain novices and tool novices. Domain novices are new to both the creative

domain as well as using the creativity support tool. Tool novices have experience with

the creative domain, but are novices at using a particular tool. To help evaluate and

promote the development of creativity support tools for novices, they also propose a

theory of creativity support based on three cognitive theories: embodied creativity,

situated creativity, and distributed creativity.

Embodied creativity is based on the premise that creativity is intrinsically

linked to the interaction that a user has with their environment. It is through inter-

acting with their world that an individual is able to make creative ideas more concrete

and express themselves. Chapter 3 of this thesis reviewed various approaches to auto-

matic synthesizer programming, which included six different interaction paradigms:
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evaluation interfaces, use of descriptive words, vocal imitations, exploration inter-

faces, example-based interfaces, and intuitive controls. These represent some of the

ways in which a system might support a user in expressing and developing their cre-

ative ideas when using a synthesizer. An interaction may including one or more these

paradigms, but is not limited to this specific set of interactions.

Situated creativity is related to the concept of flow. In the context of creativity

support, situated creativity is linked to how much effort a user must apply when

using a tool to carry out a task. As a user becomes more comfortable with a tool, it

gradually starts to feel like a natural extension of their body and they are enabled to

explore deeper expression of their creativity. This is related to the learning curve and

level of engagement that a musical interaction is able to support, which is discussed

in the previous section.

Distributed creativity is focused on the tasks that a human can offload to a

particular tool during a creative task. By handing over a portion of a creative task to

a support tool, a novice user may be able to arrive at rewarding results earlier in the

process, thereby motivating them to continue to engage in the creative process and

enhance their skills. A large portion of the previous work in automatic synthesizer

programming has been dedicated to the development of algorithms that automate

the task of programming a particular sound in a synthesizer. These methods provide

opportunities for distributing the creative load, and may be especially helpful to

novice users who are at early stages of the learning curve.

7.3 Synth Explorer Design

Synth Explorer is designed to support exploration and provide a low threshold of

entry for users to begin working with synthesized sounds within a creative context.

It is an exploration-based interface that overlays a synthesizer and provides a visual

representation of sounds generated by that synthesizer. The visual interface is aimed

at tool novices [32]: users who may have expertise in composing music and working

with digital audio workstations, but may have limited experience in working with

audio synthesizers. To support progression along the learning curve, users are able

to explore and adjust the underlying synthesizer parameter settings for any sound to

help them develop their understanding of programming.

Synth Explorer is expected to be an accessory tool used during the creative process

of composing digital music in addition to a users’ main digital audio workstation. For
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example, a user might be composing a film soundtrack in their workstation of choice

and find that they are desiring to add a new synthesized instrument to their score.

In this example, the user would open up Synth Explorer, browse for a sound that fits

their needs, and then load those sounds back into their workstation. While navigating

between two different programs may seem like an impediment to the creative flow, it

is hypothesized that the added benefits of the Synth Explorer interface will outweigh

the inconvenience of switching between programs. Additionally, future iterations of

the tool could be implemented as a VST plugins as well as host VST synthesizer

plugins to support better integration with current music production processes.

The user interaction methodology was designed according to the theories of cog-

nition presented by Davis et al. for supporting novice users working with CSTs:

embodied creativity, situated creativity, and distributed creativity [32]. The design

of Synth Explorer in relation to these three aspects is presented below.

Embodied Creativity

The browsing interface should support embodied creativity – the layout and inter-

action with the browsing interface should use multiple modes of sensory cognition

to facilitate understanding. Spatialization of multimedia objects based on similarity

has been used in previous related work [3] and is used here to provide deeper insight

into the relationship between sounds. Based on the previous issues identified with

2D visualizations of sound, which caused confusion to users [139], the user here is

given control over how the visualization is constructed to empower them to develop

an understanding of the spatial relationship between sounds. Specifically, users are

able to assign audio features to the x, y, and colour of each sound object on the 2D

layout.

Situated Creativity

Synth Explorer should support a user in maintaining creative flow while working on

their project. Additionally, the user interface should have a low threshold of entry to

enable novices to quickly start engaging with sounds and working towards realizing

their creative goal. The conscious effort required to use Synth Explorer should quickly

dissipate into the subconscious, allowing the user to instead focus the entirety of their

attention on the creative task at hand. At the same time, Synth Explorer should

implement features that support longer-term engagement by challenging users as they
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progress along the synthesizer programming learning curve. The visual exploration

interface is intended to support short-term engagement aimed at novice users – while

still remaining enjoyable for more experienced users – and to support more depth and

longer-term engagement by allowing users to modify synthesizer parameters directly

on a separate interface.

Distributed Creativity

Synth Explorer should offload the laborious task of organizing large collections of

sounds and navigating the sonic space represented by a particular synthesizer. The

system should also not take full control over the creative process and provide the user

with room to express creative control. In a traditional synthesizer, a user would need

to learn how to program sounds themselves, rely on experts to create and organize

presets, or organize presets themselves. Applying distributed creativity to Synth Ex-

plorer, the user should offload the task of programming and organizing synth presets

over to the system and shift their energy to the task of curating a selection of sounds

that fit the needs of their creative vision.

7.4 Implementation

7.4.1 Sound Generation and 2D Mapping

The core of Synth Explorer is the synthesizer. The torchsynth synthesizer introduced

in §6.2.2 was used for this prototype system. The default Voice architecture for

torchsynth was used, which is a basic two oscillator + noise synthesizer with multiple

modulation sources and a modulatable amplifier. Sounds are generated from a subset

of the synth1B1 dataset (see §6.2.1) and the resulting four second audio clips and

parameter settings are saved. Audio features are computed on each audio clip and

the dimensionality reduced in order to visualize these sounds in two dimensions based

on sound.

Audio features are designed to capture perceptually relevant aspects of audio in

a compact format. In DrumSpace, the 2D visualization of samples was produced

by computing a set of audio features and then performing dimensionality reduction

to two-dimensions using t-SNE [139, 141]. In subsequent work, the UMAP dimen-

sionality reduction algorithm [95] was found to be an effective alternative to t-SNE

in terms of time-complexity and visualization quality [71]. Synth Explorer uses two
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different UMAP embeddings as options for visualization: an embedding based on mel-

frequency cepstral coefficients and an embedding based on spectral features [104]. In

addition to these dimensionality reduced embeddings, a set of eight low-level audio

features computed using librosa1 are included. In addition to audio features, param-

eter values are also included as features that can be visualized. This supports users

in beginning to build up an understanding of the complex relationship between the

parameter space and auditory space. The parameter setting (preset) for each sound

comprises 78 individual parameter values. UMAP embeddings are computed on the

parameter settings to create two dimensional parameter features for visualization.

Additionally, the keyboard pitch is included.

The database of audio files and associated features allows the synthesizer sound

space to be automatically organized based on these features. This addresses the dis-

tributed creativity component of the design. The user offloads the task of generating

synthesizer sounds and organizing them to the system. Due to the speed of the

synthesis system and audio feature extraction process, nearly ten thousand unique

sounds can be generated and analyzed in about 20 minutes. This corresponds to over

ten hours of synthesized audio. Listening to and organizing all these sounds would

be impractical – or at least extremely mundane – for any user, whether they are a

novice or expert.

7.4.2 Browsing Interface

Using the guiding cognitive theories for developing creativity support tools, an in-

terface was designed based on the aforementioned related work. A drag and drop

interface, which is an interaction paradigm common to consumer computer user in-

terfaces, is employed, that allows users to assign different features to the dimensions of

the visualization. Instead of forcing a layout on the end user, the user has the ability

to decide which feature / embedding they want to use to construct their visualization.

This decision was made based on participant feedback that they were confused by

the sound similarity visualization used in DrumSpace [139]. An attempt is made to

address this issue by explicitly providing the user with a set of features ranging from

concrete (keyboard pitch) to more abstract (spectral embedding using UMAP), and

allowing them to decide which they want to use to create the visualization. Addi-

tionally, tooltips are provided for each feature which provides an opportunity for the

1https://librosa.org/doc/latest/index.html

https://librosa.org/doc/latest/index.html
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user to learn more about the underlying dimensions and their relationship to audio

perception.

The final interface is shown in figure 7.1. The workflow of the interface is divided

into four different sections: adding sounds, constructing the visualization, exploring

and saving sounds, and downloading saved sounds. An overview of each step in the

workflow is provided in the following sections.

Figure 7.1: Synth Explorer User Interface

Adding Sounds

The space of possible sounds that can be produced by a synthesizer is vast. Ten

thousand four second audio clips of patches from torchsynth represents only a subset

of the possible sounds that torchsynth is capable of producing. That being said, pre-

senting a user with ten thousand audio clips on a 2D layout would be overwhelming.

The user is initially presented with a small random subset of possible outcomes. The

user is given the option to control how many sounds are added to the visualization at

once using a slider control that ranges between 1 and 250. They are then able to add

that many sounds to the their visualization by dragging and dropping the UI object

representing a particular synthesizer onto the visualization area. In this way, they can

explore the sound space in an iterative fashion. This section of the user interface is

shown in figure 7.2. Currently only one synthesizer is shown in the interface; however,
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Figure 7.2: Synth Explorer Step 1

any number could be included. This would allow the user to compare and explore

multiple synthesizers at any given time.

Once a user drops a synthesizer onto the visualization, the requested number

of synthesizer sounds are randomly selected from the database and added to the

interface. A single sound is represented as a single point on the 2D visualization.

Constructing the visualization

The next section of the user interface is focused on allowing the user to control

their visualization. Specifically, this section allows users to decide which features are

assigned to which dimension of the visualization. The available features are shown

on the left side of the user interface in figure 7.3. Using the same drag and drop

paradigm, the user is able to drag any of the features onto the visualization surface

in order to modify the layout of audio samples. When the user initiates a drag

and drop interaction, large drop areas representing the different dimensions of the

visualization appear for the user to choose from. The available dimensions are the

x-axis, y-axis, and the colour of the points. Once a feature is dropped onto one of

the dimensions of the visualization, the points representing the sounds automatically

shift into the new position to reflect the changes. Any feature can be associated with

any dimension, allowing the user to explore the relationship between the features and

develop a visualization that meets their needs.

A decision was made to use the technical names of the features. While this may

be confusing to some users, there are unfortunately not many good alternatives to

this problem. Tooltips are provided to give novices an approximate non-technical
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Figure 7.3: Synth Explorer UI: Updating features

description of the feature – the hope is that these users will still feel inspired to

explore these different features and learn how they relate to the auditory dimensions

of sounds.

Exploring and Saving Sounds

The majority of the space on the user interface is occupied by the 2D browsing space,

which is shown in figure 2. This is the space where synthesizer sounds are represented

as points on a scatter plot. To listen to a particular sound, the user simply hovers

their cursor over the point representing a sound. They receive both auditory and

visual feedback once they intersect with a point. The sound represented by the point

plays and a small circle burst the same colour as the point is animated into view at

the point of interaction. Users can also zoom into the visualization using their mouse

scroll wheel and navigate the space using a click and drag operation. Each of these

gestures is meant to reflect operations that would feel intuitive and natural to an

experienced computer user.

This mode of interaction provides a fast way for the user to preview a large number

of samples. The goal of the 2D layout and exploration method is to provide the user

with an embodied method for exploring sounds. The 2D spatial layout using colours

provides users with a visual representation of the sonic space that they can interact
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with and create their own associations with. The interaction itself is easy to master

as it simply requires dragging a mouse around the screen and listening to sounds.

Modifying the layout using drag and drop interactions also requires little conscious

effort. These intuitive interactions were implemented to support situated creativity

and thereby aid creative flow.

When a user has listened to a sound that they like and want to save, they can

press the “s” key on their keyboard to save that clip to a “sound palette”. This is

equivalent to adding an item to an online shopping cart. The user can then continue

to explore sounds.

At this point the user is able to repeat any of the preceding steps and continue

to explore the visualization: add more sounds, modify the dimensions with different

features, explore the space, adjust parameters for a specific sound, and then save the

resulting sounds.

Adjusting Parameters

At any point during exploration users can move to a secondary interface and work

directly with the synthesizer parameters. This interface, shown in figure 7.4, is es-

sentially a regular control interface for the torchsynth synthesizer that contains slider

controls to update the values for all 78 of the parameters in the torchsynth Voice.

These 78 parameters are grouped by the specific module that they control (see 6.3

for a diagram of all the modules in Voice). When navigating to this screen, the pa-

rameter settings for the sound that was selected from the visual exploration interface

will be showing; this allows the user to gain insight into the specific parameter values

for that particular sound, as well as to make modifications on the sound.

Downloading

Once the user has sufficiently explored the sonic space and saved a palette of sounds

they would like to use, they can click on the download icon next to their saved sounds

and download all the synthesizer sound files they have saved. Once they have done

this they are free to use those sounds for whatever creative task they would like.
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Figure 7.4: Interface for adjusting the parameter values for a synthesizer patch, al-
lowing for fine-tuning of sounds found on the visual exploration interface

7.4.3 Technical Implementation Details

Synth Explorer is implemented as a web application. The Django framework2 was

used to implement the backend of the web app. Django is written in python and pro-

vides an elegant data-model system for interacting with a database such as MySQL3.

The sound generation and analysis portion of the application is written as a Django

management command – when this command is run, a set of sounds is rendered us-

ing torchsynth and analyzed using librosa and UMAP. Once the samples have been

analyzed and audio files saved to disk, the audio features and patch settings for each

sound is saved in a MySQL database.

The frontend of the application is written using HTML, CSS, and JavaScript. The

foundation of the application was based on code developed by Leon Feddden 4. This

code was modified to function within the Django framework and the user interaction

paradigm was modified to support dynamic adding of synthesizer samples and user

construction of the layout using drag and drop interactions. The visualization and

animation is rendered using three.js5.

2https://www.djangoproject.com/
3https://www.mysql.com/
4https://github.com/fedden/umap_tsne_embedding_visualiser
5https://threejs.org/

https://www.djangoproject.com/
https://github.com/fedden/umap_tsne_embedding_visualiser
https://threejs.org/
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7.5 Evaluation

7.5.1 Creativity Support Index

The creativity support index (CSI) [21] is a psychometric survey that was designed to

quantify the ability of a tool to assist a user with a creative task. The CSI evaluates

a creativity support tool based on six different criteria: Exploration, Expressive-

ness, Immersion, Enjoyment, Results Worth Effort, and Collaboration. The CSI is

structured as a questionnaire with two different sections. The first sections contains

12 questions, shown in figure 7.5, which participants answer with a score from 1-10

(“Highly Disagree” to “Highly Agree”). The second section contains 15 questions

which compares each of the evaluation criteria pairwise and asks the participant the

evaluate which criteria was better supported. For example, each question begins with

“When doing this task, it’s most important that I’m able to...” followed by two state-

ments, where one statement is related to one of the evaluation criteria and the other

is related to another. Participants are asked to select only one of the statements and

each evaluation criteria is ranked against all the others. Based on the scores for these

questions a CST is given a score out of 100. Synth Explorer was evaluated informally

on two separate tasks that were designed to replicate a typical synthesizer use case

in the context of music production.

Task 1: Synthesizer browsing for an existing project

In this task, the user is working on an existing musical project in a separate work-

station. They are composing a piece of music and then are asked to find a new

synthesizer sound for an additional track to their composition. They must leave the

workstation, open Synth Explorer, browse for a new sound, then leave Synth Explorer

and open the new sound back in the workstation they were initially working within.

Task 2: Creating a sound palette for a new project

In this task the user is beginning a new project and is searching for a set of synthesizer

sounds to create the sonic palette for the new composition. They may have a partic-

ular sound in mind, but they are asked to explore the interface in an open-minded

way to look for new sounds and create a collection as inspiration to start the new

project.
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Figure 7.5: Agreement questions for the creativity support index

7.5.2 CSI Results

Results of the CSI evaluation are shown in table 7.1. These results show that Synth

Explorer supported task 1 to a greater degree than task 2. Task 1 received an overall

score of 78.67 whereas task 2 received an overall score of 71.67. The results showed

that collaboration was not supported and received a score of zero for both tasks. This

makes sense considering the nature of the tasks and the tool itself. Collaboration was

not a part of the evaluated tasks. However, the tool itself does not currently support

collaboration in any meaningful way other than allowing two users to sit next to each

other and browse for synth sounds simultaneously. The tool supported exploration

in both tasks more than any of the other attributes evaluated. This result is positive

considering that was one of the major goals for the tool. Another area that was well

supported by the tool is enjoyment, while the results and expressiveness of the tool

itself were not highly rated. The lack of expressiveness also makes sense for the tool;

Synth Explorer itself does not necessarily allow expression – it allows a user to explore

sounds with the goal of maintaining a creative flow in a large creative context, despite

it being more challenging to be expressive with the tool.

The results section of the evaluation did not score highly either. This was due
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to the fact that the 2D layout of sounds was still challenging to navigate and make

sense of for users. This is in part due to the underlying method for generating sounds

as well as the sound mapping techniques. Randomly sampling a synthesizer is not

the best way to capture meaningful sounds from the synthesizer and a lot of times

produces dramatic or unusable results. Additionally, capturing sound similarity in

two dimensions is still an open question that requires further work. Despite this, the

interface was effective at enabling rapid exploration of a large number of sounds and

it was enjoyable getting to explore manipulating the visualization by dragging and

dropping the different features onto the plot.

Area Q1 Q2 T1 T2 T1 Total T2 Total
Collaboration 1 1 0 0 0 0
Enjoyment 7 8 5 4 75 60
Exploration 10 7 5 5 85 85
Expressiveness 5 4 1 2 9 18
Immersion 8 7 3 2 45 30
Results 5 6 2 2 22 22
Total Score 78.67 71.67

Table 7.1: Results of creativity support index questionnaire.

7.6 Future Work and Conclusion

This chapter has introduced the Synth Explorer creativity support tool. The inten-

tion of this tool is to support users in the process of working with synthesizers and

finding new sounds for creative projects. The development of Synth Explorer was

based on a set of design principles informed by the fields of music interaction and

creativity support tools. A further goal of the tool is to support novice users who

might have experience in music production, but do not have experience working with

synthesizers. Synth Explorer was designed to support novices using an approach to

creativity support based on cognitive theory which emphasizes embodied, situated,

and distributed creativity. The designed tool uses a 2D visualization of synthesizer

sounds to arrange sounds spatially and uses colours to support an embodied approach

to exploration. By using a simple drag and drop interface and browsing of sounds

using a visual layout, users are able to quickly start exploring and remain engaged in

their creative task. A secondary interface containing the individual parameter values

allows users to engage in manual synthesizer programming using a sound from the
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visual interface as a starting point. This encourages long-term engagement through

the inclusion of a more challenging interaction paradigm that provides a user with

more depth of control.

An evaluation of the tool using the creativity support index revealed insight into

the strengths and weaknesses of the tool and helped to identify areas for potential

further work. The most glaring limitation of the tool is that it lacks support for

collaboration; however, collaboration support could be added relatively easily based

on the implementation. Since Synth Explorer is built as a web application using the

Django framework, a user login system could be easily added to allow users to save

and share collections of sounds that they have curated. Different synthesizers and

layouts could also be shared through a similar system. Another limitation of the

current system is in the available options to filter and search for sounds. Currently,

users are limited to adding random samples to the interface and exploring different

configurations of that. In order to support users in arriving at more useful results and

collections of sounds, future iterations could provide additional search options, such

as a search by similarity, or additional tools for selecting and filtering the current

selection. Integrating more advanced sound searching methods, such as an example-

based interaction paradigm using one of the approaches discussed in chapter 5, would

also benefit future development. Providing support for playing the sounds using a

real-time keyboard interface could also encourage more engagement and help the tool

feel more like an extension of a musical instrument.
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Chapter 8

Conclusions

This thesis has explored the topic of automatic synthesizer programming and has pre-

sented work to support continued research in this field. The main research question

that was asked at the beginning of this thesis was: “How can designers of synthe-

sizer programming interfaces enable more people to be more creative more often?”

Automatic synthesizer programming seeks to answer this question through research

focused on providing more intuitive methods for users to communicate their ideas to

their synthesizers.

Chapter 2 provided a background of synthesizers and discussed the specific chal-

lenges associated with synthesizer programming. The core of these challenges arises

from the disconnect between the parameters used to control a synthesizer and the

associated auditory result. The conceptual gap created by this disconnect is large

and, accordingly, synthesizer users face a steep learning.

Automatic synthesizer programming research has explored a number of methods

for aiding users to more easily translate their desired audio results into synthesizer

parameters. Chapter 3 provided a survey of this research. Six different automatic

synthesizer user interaction styles were identified and reviewed: 1) example-based

interfaces, 2) evaluation interfaces, 3) using descriptive words, 4) vocal imitations, 5)

intuitive controls, and 6) exploration interfaces.

Inverse synthesis, also referred to as sound matching, is an example-based auto-

matic synthesizer programming method and has been a major focus of research in

this field. The goal of inverse synthesis is to find a parameter setting for a particular

synthesizer that matches a target sound as closely as possible. Chapter 3 reviewed

some of the main approaches to inverse synthesis, including genetic algorithms and

deep learning. Chapter 4 presented an open source software library that was devel-
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oped as a part of this thesis to encourage shared evaluations and reproducible research

[142]. This library, which was named SpiegeLib, contains all the code necessary to

conduct inverse synthesizer experiments using VST software synthesizers and serves

as a repository for sharing methods.

Chapter 5 discussed an inverse synthesizer experiment that was conducted using

an open-source emulation of the Yamaha DX7 synthesizer. The goal of this experi-

ment was two-fold: 1) to evaluate existing genetic algorithms (GAs) and deep learning

approaches using a benchmark task, and 2) to introduce a novel hybrid approach for

inverse synthesis. Results of the evaluation showed that amongst the existing meth-

ods, a multi-objective genetic algorithm (MOGA) [133] was most consistently able

to produce high-quality results and outperformed the deep learning methods. Com-

parison within the deep learning approaches showed that a recurrent neural network

architecture proposed by Yee-King et al. performed the best [153]. An unexpected re-

sult was that all the deep learning approaches performed better using an MFCC audio

representation compared to a higher resolution Mel-Spectrogram representation.

While the MOGA based approach outperformed all the deep learning models,

computing a single prediction was significantly more expensive in terms of compute

time. A novel hybrid approach was introduced that leveraged the strengths of each

method: this approach used deep learning for the initial population generation for a

multi-objective genetic algorithm. This approach was able to generate solutions that

were as good or better than the original MOGA in 40% of the computation time.

These results show the potential for combining deep learning with other algorithmic

approaches such as MOGAs for automatic synthesizer programming applications.

The results of these experiments also highlighted some of the challenges currently

facing inverse synthesis research. The most daunting of these challenges is the com-

plexity of the synthesizer parameter space. Developing a deeper understanding of the

relationship between synthesizer parameters and the resulting audio will be critical

in advancing research on inverse synthesis.

Motivated by the identified challenges facing automatic synthesizer programming

research, a large-scale dataset (synth1B1) and an open-source GPU-enabled modular

synthesizer (torchsynth) were developed as a part of this thesis work to support further

research in this area. These are presented in chapter 6. Improving the efficacy of deep

learning approaches for automatic synthesizer programming is a promising area for

future development. The synth1B1 dataset and associated torchsynth synthesizer

should allow researchers to more efficiently conduct training and pre-training of deep
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learning models on synthesizers, and more readily explore the relationship between

parameters and the associated auditory output.

The final chapter of this thesis, chapter 7, discussed a new automatic synthesizer

programming application built on top of the torchsynth synthesizer. This application,

called Synth Explorer, provides a visual representation of sounds that are arranged on

a two-dimensional interface based on sound similarity. The arrangement and colour

of the visualization is controlled by the user, allowing them to construct a visual

representation of synthesizer sounds that suits their creative needs. It is an example

of an exploration-based interface, and was designed to encourage novice users to

explore the auditory space of a synthesizer and begin to learn the relationship between

sounds and synthesizer parameters. This development was based on a proposed design

framework derived from the fields of creativity support [125] and music interaction

[60]. One of the benefits of exploration-based interfaces is that they engage the user

in the process of searching for sounds within a synthesizer, as opposed to taking

over the process as is the case with example-based (inverse synthesis) applications.

Creating effective and engaging automatic synthesizer programming interfaces will

likely benefit from the combination of multiple interaction styles. For example, adding

an example-based search option within Synth Explorer, using the methods identified

in chapter 5, would help support exploration and efficient searching of a synthesizer.

8.1 Future Work

The author hopes that the open-source software and datasets published as a com-

ponent of this thesis will contribute to further research into automatic synthesizer

programming. Clearly, additional work is required to continue to deepen our under-

standing of the relationship between synthesizer parameters and the resulting audio.

The synth1B1 dataset and associated torchsynth synthesizer provide a tool to sup-

port research in this direction. However, synth1B1 currently only represents sounds

generated using a subtractive synthesis paradigm. Developing more synthesizers in

torchsynth using other synthesis methods, such as FM, will help support further

research.

One of the limiting factors that was highlighted in chapter 6 is the lack of a suit-

able audio representation that captures the salient perceptual qualities of synthesizer

sounds. The development of a perceptually relevant representation of audio, and es-

pecially timbre, will help researchers quantify the similarity of synthesizer sounds and
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further support the development of automated methods of synthesizer programming.

Further exploration of the role of audio representations in deep learning approaches

will also help to support future development in this area.

A current limitation of deep learning approaches for inverse synthesis is the in-

ability to calculate training loss on audio results. This is because there are currently

no available methods for computing gradients over traditional software synthesizers,

which eliminates them from being used within the training loop of a deep learning al-

gorithm. Instead, researchers must calculate training loss using parameter error. This

approach is limited due to the complex nature of the synthesis parameter space, as

discussed in chapter 5. Developing methods that allow for synthesizers to be included

in the training loop of a deep learning algorithm is a promising route for improving

the performance of these methods for inverse synthesis. Ramı́rez et al. recently pub-

lished work that used stochastic gradient estimation to include black-box audio effects

within a deep learning model [107]. This approach could likely be adapted to work

with synthesizers. Engel et al.’s recent work on differentiable digital signal processing

(DDSP) provides another possible avenue for including synthesis algorithms within

deep learning models [39]. The torchsynth synthesizer introduced in chapter 6 was

inspired by this work and future work on that includes updating it to support the

computation of gradients over synthesis modules.

Even if the technical hurdles in automatic synthesizer programming can be solved,

it will still be necessary to develop more intuitive user interfaces to better assist syn-

thesizer users in achieving their creative goals. The user study conducted by Kreković

identified the desire amongst experienced synthesizer users for improved methods for

working with their synthesizers [79]. The responses also suggested that intuitive con-

trol interfaces and example-based approaches would be helpful. Determining the best

approaches to integrating artificial intelligence and machine learning based techniques

with a user interface that supports creativity will require future work.

8.2 Final Remarks

A well designed sound on a synthesizer has the ability to enhance a musical compo-

sition and transport a listener to another world. Those who have mastered the art

of synthesizer programming have contributed some of the most widely acclaimed mu-

sical recordings and film scores; from the best-selling classical compositions of Bach

re-imagined by Wendy Carlos in Switched on Bach to the Deep Note (the “THX
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sound”) designed by Dr. Moorer that played at the beginning of the 1983 premiere of

Star Wars: Episode VI - Return of the Jedi. With the rise of the personal computer,

technology for music and audio production has become increasingly decentralized.

Anyone with a laptop or a mobile phone has the power to make sounds with a syn-

thesizer. However, anyone who has tried to program a new sound into a synthesizer

will attest to the fact that the usability of these devices has yet to catch up to their

availability. The author hopes that the work presented in this thesis well help to

contribute to the goal of achieving the best possible mode of automatic synthesizer

programming so as to enable users to express themselves more freely with synthesizers

and to empower them to create the next great sound.
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Appendix A

Model Architectures

The model architectures provided below were used in the experiments conducted in

chapter 5. Each model estimated a subset of nine parameters from Dexed to match

a target audio. n is the batch size:

Table A.1: MFCC MLP

Layer Type Output Shape Num Parameters
Input (n, x)
Dense (n, 256) 146688
ReLU (n, 256)
Dense (n, 128) 32896
ReLU (n, 128)
Dense (n, 64) 8256
ReLU (n, 64)
Dropout (0.3) (n, 64)
Dense (n, 7) 455

Total 188,295
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Table A.2: Mel-Spectrogram MLP

Layer Type Output Shape Num Parameters
Input (n, x)
Dense (n, 256) 721152
ReLU (n, 256)
Dense (n, 128) 32896
ReLU (n, 128)
Dense (n, 64) 8256
ReLU (n, 64)
Dropout (0.4) (n, 64)
Dense (n, 7) 455

Total 762,759

Table A.3: MFCC LSTM

Layer Type Output Shape Num Parameters
Input (n, x)
LSTM (n, 44, 64) 19968
LSTM (n, 44, 64) 33024
LSTM (n, 64) 33024
Dropout (0.3) (n, 64)
Dense (n, 7) 455

Total 86,471

Table A.4: Mel-Spectrogram LSTM

Layer Type Output Shape Num Parameters
Input (n, x)
LSTM (n, 64, 128) 88576
LSTM (n, 64, 128) 131584
LSTM (n, 128) 131584
Dropout (0.2) (n, 128)
Dense (n, 7) 903

Total 352,647
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Table A.5: MFCC LSTM++

Layer Type Output Shape Num Parameters
Input (n, x)
Bidirectional LSTM (n, 256) 145408
Dropout (0.3) (n, 256)
Dense (n, 128) 32896
ELU (n, 128)
Highway Layer 1-7 (n, 128) 33024
Dense (n, 7) 903

Total 410,375

Table A.6: Mel-Spectrogram LSTM++

Layer Type Output Shape Num Parameters
Input (n, x)
Bidirectional LSTM (n, 256) 177152
Dropout (0.4) (n, 256)
Dense (n, 128) 32896
ELU (n, 128)
Highway Layer 1-7 (n, 128) 33024
Dense (n, 7) 903

Total 442,119
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Table A.7: MFCC CNN

Layer Type Kernel Size Output Shape Num Parameters
Input (n, x)
Conv2D (Stride=2,2) (3,3) (n, 22, 7, 16) 160
ReLU (n, 22, 7, 16)
Batch Normalization (n, 22, 7, 16) 64
Conv2D (Stride=2,2) (3,3) (n, 11, 4, 32) 4640
ReLU (n, 11, 4, 32)
Batch Normalization (n, 22, 7, 16) 128
Conv2D (Stride=2,2) (3,3) (n, 6, 2, 32) 9248
ReLU (n, 6, 2, 32)
Batch Normalization (n, 22, 7, 16) 128
Conv2D (Stride=2,2) (3,3) (n, 3, 1, 64) 18496
ReLU (n, 3, 1, 64)
Batch Normalization (n, 22, 7, 16) 256
Conv2D (Stride=2,2) (3,3) (n, 2, 1, 64) 36928
ReLU (n, 2, 1, 64)
Batch Normalization (n, 22, 7, 16) 256
Dropout (0.3) (n, 2, 1, 64)
Flatten (n, 128)
Dense (n, 512) 66048
Dropout (0.3) (n, 512)
Dense (n, 512) 262656
Dropout (0.3) (n, 512)
Dense (n, 7) 3591

Total 402,599
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Table A.8: Mel-Spectrogram CNN

Layer Type Kernel Size Output Shape Num Parameters
Input (n, x)
Conv2D (Stride=2,2) (3,3) (n, 32, 22, 16) 160
ReLU (n, 32, 22, 16)
Conv2D (Stride=2,2) (3,3) (n, 16, 11, 32) 4640
ReLU (n, 16, 11, 32)
Conv2D (Stride=2,2) (3,3) (n, 8, 6, 32) 9248
ReLU (n, 8, 6, 32)
Conv2D (Stride=2,2) (3,3) (n, 4, 3, 64) 18496
ReLU (n, 4, 3, 64)
Conv2D (Stride=2,2) (3,3) (n, 2, 2, 64) 36928
ReLU (n, 2, 2, 64)
Dropout (0.3) (n, 2, 2, 64)
Flatten (n, 256)
Dense (n, 128) 32896
Dropout (0.3) (n, 128)
Dense (n, 128) 16512
Dropout (0.3) (n, 128)
Dense (n, 128) 16512
Dropout (0.3) (n, 128)
Dense (n, 7) 903

Total 136,295
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Appendix B

Model Hyperparameters

Table B.1: Training Hyperparameters

Model Batch Size η η Decay Rate

MFCC-MLP 64 0.0005 0
MFCC-LSTM 128 0.001 0
MFCC-LSTM++ 64 0.001 0
MFCC-CNN 32 0.001 3
Mel-MLP 32 0.00005 0
Mel-LSTM 32 0.0005 0
Mel-LSTM++ 32 0.001 0
Mel-CNN 64 0.001 4
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Appendix C

Model Training Loss

(a) MLP (b) LSTM

(c) LSTM++ (d) CNN

Figure C.1: MFCC Model Training and Validation Loss Plots
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(a) MLP (b) LSTM

(c) LSTM++ (d) CNN

Figure C.2: Mel-Spectrogram Model Training and Validation Loss Plots
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Appendix D

JAES Publication Summary

A brief summary/abstract is provided here of the author’s paper entitled “Manifold

Learning Methods for Visualization and Browsing of Drum Machine Samples”, which

was published in 2021 in the Journal of the Audio Engineering Society (JAES) [123]

and co-authored by Kirk McNally, George Tzanetakis, and Ky Grace Brooks.

The use of electronic drum samples is widespread in contemporary music produc-

tions, with music producers having an unprecedented number of samples available

to them. The task of organizing and selecting from these large collections can be

challenging and time-consuming, which points to the need for improved methods for

user interaction. This paper presents a system that computationally characterizes

and organizes drum machine samples in two-dimensions based on sound similarity.

The goal of the work is to support the development of intuitive drum sample browsing

systems. The methodology presented explores time segmentation, which isolates tem-

poral subsets from the input signal prior to audio feature extraction, as a technique

for improving similarity calculations. Manifold learning techniques are compared and

evaluated for dimensionality reduction tasks, and used to organize and visualize au-

dio collections in two-dimensions. This methodology is evaluated using a combination

of objective and subjective methods including audio classification tasks and a user

listening study. Results show that using time-segmentation lead to overall higher cor-

relations with subjective rankings and that using MDS dimensionality reduction with

time-segmentation lead to higher correlations with subjective rankings for similarities

in two-dimensions. Finally, we present an open-source audio plug-in developed using

the JUCE software framework that incorporates the findings from this study into an

application that can be used in the context of a music production environment.
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