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Abstract

The use of electronic drum samples is widespread in contemporary music productions,
with music producers having an unprecedented number of samples available to them. The
task of organizing and selecting from these large collections can be challenging and time-
consuming, which points to the need for improved methods for user interaction. This paper
presents a system that computationally characterizes and organizes drum machine samples
in two-dimensions based on sound similarity. The goal of the work is to support the devel-
opment of intuitive drum sample browsing systems. The methodology presented explores
time segmentation, which isolates temporal subsets from the input signal prior to audio
feature extraction, as a technique for improving similarity calculations. Manifold learning
techniques are compared and evaluated for dimensionality reduction tasks, and used to
organize and visualize audio collections in two-dimensions. This methodology is evaluated
using a combination of objective and subjective methods including audio classification tasks
and a user listening study. Finally, we present an open-source audio plug-in developed us-
ing the JUCE software framework that incorporates the findings from this study into an
application that can be used in the context of a music production environment.
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0. INTRODUCTION

The first commercial electronic drum machine was released in 1959 by the RudolphWurlitzer
Corporation. Marketed as an automatic rhythm accompaniment, the Side Man featured
ten preset electronic drum sounds and twelve predefined rhythmic patterns. In recent
decades the use of drum machine and drum samples has grown to such a degree that
they are now ubiquitous in music productions, with contemporary music producers having
an unprecedented number of drum samples available to them. The issue of navigating
and selecting from large collections of audio samples has been expressed by expert users
in the field of electronic dance music (EDM) production when asked about their desires
for future technological advancements [1]. Intelligent music production (IMP), including
automated systems intended to aid creativity and improve user workflow, is a growing area
of research in the area of creative Music Information Retrieval (MIR) [2, 3] and the problem
of automatic sorting, selection, and auditioning for large sample library collections within a
music production context has not been fully studied. The use of digital audio workstations
(DAWs) in contemporary music production is widespread and the use of audio samples,
including drum machine samples, is common practice within these tools. Although most
mainstream DAWs support the navigation of audio samples directly within the software,
samples are typically displayed in a list-based user-interface and any searching is based on
filenames or semantic tagging [4].

The focus of our work is to explore different methods used to characterize kick and
snare drum audio samples, sort them based on sound similarity, and visualize them in two-
dimensions. This research is an extension of prior work by the authors [5, 6], where it was
found that using short segments taken from full length audio samples increases the ability
to computationally characterize and classify kick and snare drum samples.

The methodology presented here utilizes time segmentation as a pre-processing step
to audio feature extraction, where small segments are first extracted from the full-length
audio sample. 13 different time segment combinations of different sample lengths and
sample start offsets are included for comparison. A novel method for selecting different
time segments per audio feature in order to maximize variance is introduced, and achieves
promising results. In order to visualize drum samples we explore and compare a variety
of dimensionality reduction methods including the traditional linear Principle Component
Analysis (PCA) method as well as other non-linear manifold learning approaches. PCA and
audio classification tasks, performed on a database of 4228 kick and snare drum samples
from 250 individual drum machines, is used to explore and quantitatively evaluate our
approach. A listening user study was designed to develop ground truth measurements of
sound similarity for a selection of kick and snare drum samples, and the results of this user
study were used to evaluate the perceptual relevance of our proposed methodology.

The remainder of this paper is structured as follows: A review of related work is provided
in Section 1. Sections 2, 3, and 4 outline the research performed which explores and evaluates
the methods used for characterizing and visualizing kick and snare drum samples. Section
5 describes the listening test used, and the statistical analysis of the results.
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1. RELATED WORK

There is increasing interest by practitioners of music production to adopt technology that
improves creativity and aid user workflow [7], and there is a growing body of work in the
fields of intelligent music production and MIR to address these needs. The development
of tools to visualize audio collections and enhance the way users interact with these col-
lections is an established area of research in MIR. The concept of visualization in MIR is
comprehensively reviewed by Cooper et al. [8], and is updated by Schedl et al. to represent
contemporary work [9]. AudioQuilt is a notable example of an experimental application
for visualizing audio samples [10]. AudioQuilt uses metric learning and kernalized sorting
algorithms to visualize audio samples in two dimensions. An application that utilizes simi-
lar techniques to the work presented here is DrumSpace, developed by Turquois et al. [11].
DrumSpace performs feature extraction on a set of drum sounds and displays them on a two
dimension interface using a Student-t Stochastic Neighbour Embedding (t-SNE) algorithm.
User participants responded positively to the two dimensional interface for exploring drum
samples, however, reported being confused by the arrangement of samples when organized
by sound similarity. Turquois et al. suggest the use of colour in visualizations as a potential
approach to improving the perception of sound similarity. Another related application with
a novel user interface is Mixploration [12], which utilizes a self-organizing map algorithm for
visualization and manipulation of multiple audio mixing parameters on a two dimensional
interface. Moving beyond two dimensions, experimental applications with novel user inter-
faces for exploring sound collections in three dimensions are reviewed by Tzanetakis and
Cook [13]. A unique approach to sample retrieval is proposed by Knees and Andersen [4],
in which users query audio using visual sketches of their mental images of that sound. A
recent noteworthy commercial audio plugin called XO1 developed by XLN Audio organizes
user drum samples on a two dimension interface for sample exploration.

An essential component of the audio visualization tools introduced above is the extrac-
tion of data from the source material that is to be visualized. Computational audio analysis
is at the core of many MIR applications and improving these techniques has been a focus
of research within this field. Related audio analysis studies focussing on percussion sounds
includes work by Herrera et al. [14], in which a set of features is used to analyze a large
set of drum samples, including 33 different drum classes comprised of both acoustic and
synthetic sources. In subsequent work, Herrera et al. focussed on analyzing un-pitched
percussive sounds, including a mix of acoustic and synthetic kick and snare drums [15]. A
unique component of their study is a classification test that classifies percussion instruments
of the same type by their make or model. Several new music content descriptors related
to percussion were later proposed by Herrera et al., including “percussivity index” which
estimates the amount of percussion in a musical audio file as well as “percussion profile”
which is an estimate of the balance between drums and cymbals in a percussion track [16].
Sound similarity and classification of electronic drum samples is a component of the exper-
iments performed by Tutzer [17]. Focusing on classification of cymbal sounds, Souza et al.
[18] achieved high accuracy scores using Support Vector Machines.

It is typical in computational audio analysis to examine the entire duration of a sound
being studied, however there is evidence that emphasizing certain portions of an audio signal

1. https://www.xlnaudio.com/products/xo
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or considering only a temporal subset of the entire signal may have a beneficial effect on
analysis in terms of accuracy to human perception. Toiviainen explored emphasizing the
onset of an audio signal as a method to optimize auditory images, which are representations
of an audio signal that are computed using an auditory model [19]. An auditory model takes
into account filtering performed by the inner and outer ear, the dynamics of the basilar
membrane, the mechanical response of hair cells, and the electrical response of auditory
nerves. They found significant improvements in correlations between auditory images and
subjective similarity ratings when the onset of a signal was emphasized. Building upon
this work, Pampalk et al. focused on sound similarity between percussion sounds of the
same class and found that using shorter sample lengths resulted in improvements in the
characterization of kick drum sounds [20]. In their work, four distinct percussion categories
were examined (kicks, snares, high toms, and low toms) and two different models of sound
similarity were compared: the MPEG-7 model and aligned auditory images.

2. METHODS

2.1 Pre-Processing

Pre-processing is applied to all samples prior to audio analysis. All audio samples are
down-mixed to mono and resampled to a rate of 44.1kHz if required. A normalization step
includes applying ReplayGain2.

2.2 Time Segmentation

In this step, a segment of the kick or snare sample is selected for further processing. For
clarity we will refer to the segment extracted from the original as the sample, and the
original kick or snare sample as the input signal. Choices for sample lengths are derived
from work by Danielsen et al. [21], where a 23ms window is used to segment snare drum
samples, a 50ms segment is used by Bello [22], a 100ms segment is used by Herrera et al.
[16], and Pampalk et al. [20] compared three different sample lengths: the first 250ms, the
first 1000ms, and the entire input signal. In this work, we use sample lengths of 25ms,
100ms, and 250ms, 500ms. We also consider three different starting positions for each
sample length. The starting position is derived from the signal envelope and is selected
as the point in time during the attack portion of the signal when the envelope reaches a
certain percentage of the maximum amplitude. Choices for these positions are derived from
the Essentia documentation3, the toolbox used for audio feature analysis, and include 20%,
50%, and 90%. Therefore, there are 12 different combinations of sample length and sample
start offset which we evaluate in this study. The entire sample duration with no start offset
is also considered.

2. http://wiki.hydrogenaud.io/index.php?title=ReplayGain_1.0_specification
3. www.essentia.upf.edu/documentation
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The sample time segmentation s is selected as follows:

1. Calculate the the signal envelope g from the input signal x by rectifying x and ap-
plying a non-symmetric low-pass filter:

g[n] = (1− k) ∗ g[n− 1] + k ∗ |x[n]|

Where

k =

e
−Ts

at/1000 for |x[n]| > g[n− 1]

e
−Ts

rt/1000 for |x[n]| <= g[n− 1]

Ts = Sampling period, at = 10ms, rt = 1500ms

2. Determine the sample start position nstart where nstart is the first occurrence of n such
that g[n] = p ∗ max(g) and p ∈ {0.2, 0.5, 0.9}. Figure 1 shows an example of these start
positions calculated on the envelope of a drum signal.

3. Calculate the sample end position send and extract the sample s from the full input
signal x with length of l ∈ {25ms, 100ms, 250ms, 500ms}:

nend = nstart + l/1000 ∗ Ts

s = x[nstart : nend]

Figure 2 shows an example of a time segmentation with a length of 100ms starting at 50%
of the attack computed on a drum signal.

2.3 Feature Extraction

Audio feature extraction was performed using the Essentia library [23]. This library is
selected based on findings reported by Moffat et al. in their evaluation of audio feature
extraction toolkits [24], where it was found to be the most comprehensive library with
regards to feature coverage. The features selected for use are from those defined both
within the ISO/IEC-defined MPEG-7 format, used in previous audio characterization work
by Peeters et al. [25], and prior work into the classification of percussion sounds. These
features are described in detail in subsequent work by Peeters et al. [26] and include
MFCCs, HFC, spectral, and temporal features, as well as a set of 27 bark-scale frequency
bands which together constitute a 133-dimensional feature-space. These features have been
shown to work well across a wide variety of audio analysis and classification tasks and our
analysis of time segmentations and features shows how they can be selected and adapted
to the task at hand.

For computation of the spectral features, a 2048 sample Hann window using a hop-size
of 1/8, derived from Pampalk et al. [20] is used. Calculations for each feature using the
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Attack Time

90%50%20%

Figure 1: Choices for sample position. Choices are 20%, 50%, and 90% of the maximum
amplitude of the signal envelope. The attack time is also shown and spans from 0% to 100%
of the maximum amplitude of the signal envelope.

Sample Length

100ms @ 50% of attack

Figure 2: Sample length and position. A snare drum audio file with a sample length of
100ms positioned at 50% of the attack envelope.
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2048 sample window are summarized over time using mean and standard deviation. An
equal loudness filter is applied as a pre-processing step before calculating spectral centroid,
kurtosis, skewness, and spread as suggested by the Essentia documentation4, for details on
the equal loudness filter see the ReplayGain specification5

2.4 Mixed Time Segmentation

A mixed segmentation method is introduced here as an experimental approach to using
time segmentation in conjunction with feature extraction and dimensionality reduction.
This method seeks to maximize variance in the dataset by independently selecting a time
segmentation for each feature. This method is computed using the following procedure:

1. Let D ∈ Rn×s×d be the dataset resulting from feature extraction where n is the number
of kick or snare samples, s is the number of time segmentations computed (13), and d is
the number of audio features extracted (133).

2. For each feature di, select the time segmentation smaxi that results in the greatest
variance for that feature.

3. Compile a new matrix Dmixed ∈ Rn×d such that each feature di was calculated us-
ing smaxi .

2.5 Dimensionality Reduction

Dimensionality reduction is used here to visualize the results of feature extraction in two
dimensions. Seven different approaches to dimensionality reduction are implemented and
compared in this work: six different manifold learning algorithms as well as PCA.

2.5.1 Manifold Learning

Manifold learning is an approach to dimensionality reduction that works on the assumption
that data in high dimensional spaces can be embedded on a lower dimensional, non-linear,
manifold within that space. If this lower dimensional manifold is two or three dimensions,
then it can be visualized. One implementation of manifold learning that has shown promis-
ing results and has been used in previous work for visualization of drum samples [11] is
t-distributed Stochastic Neighbour Embedding (t-SNE) [27]. Because t-SNE has a reduced
tendency to crowd data points near the centre of the map, visualizations are considered
to be significantly improved compared to its predecessor Stochastic Neighbor Embedding
[28]. In order to more thoroughly investigate the efficacy of dimensionality reduction for
visualization of drum audio samples, several other manifold learning algorithms have been
included for testing. In total, six different manifold methods are compared here: t-SNE
with random initialization, t-SNE with PCA initialization, Isomap [29], Locally-Linear Em-
bedding (LLE) [30], Multi-dimensional Scaling (MDS) [31], and Spectral Embedding [32].

4. https://essentia.upf.edu/reference/std_LowLevelSpectralEqloudExtractor.html
5. http://wiki.hydrogenaud.io/index.php?title=ReplayGain_1.0_specification
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2.5.2 Principal Component Analysis

Principal Component Analysis (PCA) has been used in previous work as a dimensionality
reduction technique for visualization of audio [13], and is included here for comparison.
Because PCA is linear, more complex data structures existing in higher dimensions that
another manifold learning technique might be able to catch can potentially be lost by
PCA. Dimensionality reduction from 133-dimensions was computed for all seven methods
and all time segmentations. Prior to dimensionality reduction, the feature variables were
standardized to have a mean equal to zero and unit standard deviation.

3. ANALYSIS

3.1 Feature Analysis using PCA

In this section we perform an analysis of the time segmentation methodology using PCA. In
addition to being used as a dimensionality reduction technique, PCA is used in exploratory
data analysis and has been used as such in related IMP work by Wilson et al. [33]. In their
work, Wilson et al. looked at 1501 different mixes of 10 different songs and used feature
extraction and PCA to characterize these mixes and to determine to most relevant features
in terms of variance. Similarly, we use feature extraction and PCA here to characterize kick
and snare samples and to explore the effects of time segmentation in terms of variance. Our
goal is to create a two-dimension representation that accurately captures the similarities
and variations between drum sounds. Although PCA explained variance might not be
relevant for classification, it does provide an indication that the identified features are more
appropriate for capturing the similarities and variations between drum sounds across the
entire data-set.

The principal components that result from PCA are a set of new axes that maximize
the variance of the dataset such that the first axis contains the most variance. Using
this, the results from feature extraction can be analyzed and the most relevant features for
characterizing kick and snare samples can be determined in terms of variance. PCA was
run independently on kick and snare drum samples for each time segmentation method. For
each of these analyses the null hypothesis was rejected using Bartlett’s test of sphericity,
calculated using the NumPy package [34]. All feature variables were standardized prior to
PCA to have a mean equal to zero and unit standard deviation.

Results of PCA give insight into how the time segmentation effects variance and which
features are most useful for characterizing kick and snare drum samples. Variance is maxi-
mized in the first two dimensions when using a 100ms window starting at 20% of the attack
for kick sounds, and a 250ms window starting at 90% of the attack for snare sounds. The
first two dimensions explain 31.74% and 32.79% of the variance for kick and snare drums
respectively. The main contributing features for the first dimension of kick drums after
PCA are the mean and standard deviation of the HFC, and the high spectral energyband.
The second MFCC band and the mean and standard deviation of the middle low spectral
eneryband are main contributing features to the second dimension of kick drums. For snare
drums, spectral energy (SE), and the 18th and 19th bark bands contribute highly to the first
dimension and the standard deviation of bark spread, the standard deviation of the zero
crossing rate, and MFCC band 5 are main contributors to the second dimension. Table 1
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Table 1: Principle Component Analysis: Variance Ratios

Length Start
Kick Snare

Dim 1 Dim 2 Dim 3 Dim 4 1+2 Dim 1 Dim 2 Dim 3 Dim 4 1+2

25ms 20% 16.17% 13.66% 8.87% 7.49% 29.83% 17.11% 13.85%5 9.51% 5.48% 30.97%
25ms 50% 17.75% 11.88% 9.50% 7.63% 29.63% 18.08% 13.73% 9.39% 5.37% 31.81%
25ms 90% 16.49% 11.19% 9.82% 7.33% 27.68% 19.38% 12.81% 8.79% 5.36% 32.18%

100ms 20% 17.58% 14.16%2 9.38% 7.76% 31.74%3 20.16% 11.03% 9.85% 5.93% 31.19%
100ms 50% 17.10% 13.41% 9.31% 8.19% 30.50% 20.75% 10.75% 9.77% 5.95% 31.32%
100ms 90% 16.51% 12.05% 10.38% 8.90% 28.56% 21.22% 10.5% 9.37% 6.26% 31.37%

250ms 20% 17.28% 14.07% 8.75% 8.16% 31.35% 21.22% 10.73% 9.22% 6.52% 31.95%
250ms 50% 16.87% 13.48% 8.86% 8.22% 30.35% 21.70% 10.54% 9.08% 6.52% 32.24%
250ms 90% 16.33% 12.52% 9.51% 8.60% 28.85% 22.75%4 10.04% 8.89% 6.63% 32.79%6

500ms 20% 17.34% 13.38% 8.74% 7.82% 30.71% 21.43% 10.19% 9.15% 6.94% 31.62%
500ms 50% 16.84% 12.99% 8.71% 8.13% 29.84% 21.86% 10.01% 9.03% 6.97% 31.87%
500ms 90% 16.01% 12.41% 9.36% 8.52% 28.42% 22.70% 9.69% 8.71% 7.01% 32.39%

Mixed - 16.17% 13.66% 8.87% 7.49% 29.83% 18.04% 11.00% 10.04% 6.55% 29.04%

Full 0% 18.08%1 13.46% 9.00% 7.37% 31.47% 21.01% 10.38% 9.15% 7.08% 31.54%

Table shows how much each dimension contributes in terms of variance after principal component analysis.
The highlighted cells show the time segmentation combination that contains the most variance for that
column. The features that contributed the most to the variance for each of those highlighted cells is shown
below:
Main contributing features:
1 Dim 1: HFC, HFC Std Dev, Mid-High Spectral Energyband
2 Dim 2: MFCC Band 2, Mid-Low Spectral Energyband Std Dev, Mid Low Spectral Energyband
3 Dim 1: HFC, HFC Std Dev, High Spectral Energyband; Dim 2: MFCC Band 2, Mid-Low Spectral
Energyband Std Dev, Mid Low Spectral Energyband
4 Dim 1: Spectral Energy, Bark Band 18 and 19
5 Dim 2: Spectral Decrease, Spectral Decrease Std Dev, Spectral RMS
6 Dim 1:Spectral Energy, Bark Band 18 and 19 Dim 2: Bark Spread Std Dev, Zero Crossing Rate Std Dev,
MFCC Band 5

summarizes results for kick and snare drum analyses and notes the features that contribute
highly to the associated dimensions for the time segmentation methods that retain the
most variance. Dimensions three and four are also included to show how time segmentation
effects the higher dimensions resulting from PCA.

4. EXPERIMENTAL RESULTS

4.1 Audio Classification

Audio classification is used here to evaluate and compare the effect of the time segmen-
tation choices. The classification tasks performed are sample type, drum machine, and
manufacturer classification. Three different classification algorithms implemented in Scikit-
learn [35] are used: Support Vector Machine, Perceptron, and Random Forest. 10-fold
cross-validation was used for each classification task and accuracy scores are calculated as
an average between the three algorithms. The ZeroR classifier, which simply predicts the
majority class, was used to determine the baseline accuracy for each task. Classification
was run on all time segmentation choices, as well as on the full sample duration and the
mixed time segmentation method, and all training data was shuffled prior to training.

9



Shier, McNally, Tzanetakis, and Brooks

Table 2: Accuracy scores in percentages for classification tests trained using results
from feature extraction and time segmentation. Mean and standard deviation of
accuracy across validation folds are shown. The shaded cells show the highest
performing time segmentation for each task (multiple cells shown in case of a tie).

Length Start Sample Type
Drum Machine Manufacturer
Kick Snare Kick Snare

25ms 20% 95.5± 1.8 87.5± 7.1 75.7± 5.1 50.4± 12.2 47.7± 10.6
25ms 50% 96.1± 1.7 86.5± 5.3 73.3± 5.6 51.1± 12.7 46.7± 9.6
25ms 90% 96.4± 2.1 82.6± 6.1 70.5± 6.2 47.5± 11.1 48.2± 9.4
100ms 20% 97.6± 1.3 93.4± 5.1 78.3± 4.8 51.8± 13.7 50.6± 10.5
100ms 50% 97.7± 1.6 90.5± 5.3 76.3± 5.0 52.2± 12.3 49.7± 11.3
100ms 90% 97.5± 2.4 90.0± 5.4 75.1± 5.4 48.7± 12.2 51.0± 10.6
250ms 20% 97.6± 1.6 92.7± 4.2 76.8± 5.7 52.1± 12.6 51.3± 9.5
250ms 50% 97.8± 1.2 92.2± 4.0 77.6± 4.6 53.3± 12.8 49.9± 9.6
250ms 90% 97.7± 1.4 87.4± 7.1 73.5± 4.5 50.9± 10.7 51.3± 9.9
500ms 20% 97.5± 1.8 93.5± 3.4 80.7± 4.4 52.3± 12.2 52.3± 8.8
500ms 50% 97.8± 1.3 92.2± 3.7 80.2± 4.7 53.2± 11.6 51.4± 9.8
500ms 90% 97.7± 1.5 88.9± 5.7 79.6± 5.5 50.0± 12.3 54.3± 7.9
Mixed - 97.8± 1.3 94.0± 4.4 81.1± 4.2 53.0± 13.6 51.8± 8.8
Full 0 97.5± 1.6 93.5± 4.7 80.9± 4.9 54.8± 13.6 55.1± 7.9

4.1.1 Sample Type Classification

Sample type classification seeks to distinguish between kick and snare samples. All of the
samples from the dataset were used and the baseline accuracy score was calculated to be
52.13%. The highest accuracy for kick and snare classification was 97.8% and was achieved
by three time segmentation methods: 250ms positioned at 50% the attack, 500ms positioned
at 50% the attck, and mixed time segmentations. Full results are shown under the Sample
Type column in Table 2.

4.1.2 Drum Machine Classification

Drum machine and manufacturer classification tasks performed within each sample class
based on the classification study on unpitched percussion sounds by Herrera et al. [15] are
used to evaluate the ability of this analysis technique to characterize percussion samples of
the same type.

For drum machine classification, machines were selected for kicks and snares separately
such that each drum machine would have at least 50 samples for each type. Six distinct
classes were used for kick drums which resulted in 464 kick samples in total and a baseline
accuracy of 22.20%. The drum machines selected for kick drum classification were the Alesis
DM5, Alesis SR-16, Roland SH-09, Roland TR-808, Roland TR-909, and the Yamaha RM50.
Nine distinct classes were used for snare drums which resulted in 726 snare samples and a
baseline accuracy of 14.88%. Drum machines used for the snare drum classification were
the Alesis DM5, Alesis SR-16, Boss DR-660, Roland System-100, Roland TR-808, Roland
TR-909, Yamaha CS6, Yamaha RY30, and the Yamaha RM50. Classification performed
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best using the mixed time segmentation scheme for both kicks and snares, reporting 94%
and 81.1% accuracy respectively. Full results are shown under the Drum Machine column
shown on Table 2.

Confusion matrices give further insight into the performance of each classification task by
providing a breakdown of how each sample was categorized. In the specific case, matrices are
produced by averaging the classification results from the three algorithms used. Confusion
matrices produced from the results of the mixed time segmentation test for both kicks and
snares are shown in tables 5a and 6a respectively. These results show that for kick drums,
the Yamaha RM50 was easiest to classify with 102 of the 103 samples included being labelled
correctly. For snare drums, sounds produced by the System-100 were the easiest to classify
with 71 out of 72 samples being labelled correctly. Interestingly, the Yamaha RM50 snare
sounds were more challenging to classify with only 26.33 out of 67 samples being classified
correctly. Both kicks and snares from the iconic Roland TR-808 drum machine were guessed
accurately with 62.67 out of 67 kick samples labelled correctly and 58.33 out of 63 snare
samples labelled correctly.

4.1.3 Manufacturer Classification

Manufacturers were selected such that each manufacturer was represented by at least 100
samples of each type. The same six manufactures were used for the kicks and snares and are
Alesis, Boss, E-MU, Korg, Roland, and Yamaha. For kick drums a total of 1328 samples
were included reporting a baseline accuracy score of 39.16%. For snare drums a total of 1556
samples were used reporting a baseline accuracy of 33.1%. Results show that manufacturer
classification was a more difficult task than the previous two tasks; kick drum classification
reported 54.8% accuracy using the full sample length, and snares reported 55.1% accuracy
using the full sample length. Full results are shown under the Manufacturer column on
Table 2.

4.2 Evaluation of Dimensionality Reduction

Classification is also used to evaluate the effectiveness of the seven methods of dimension-
ality reduction implemented. The drum machine classification test is repeated, however,
instead of using the full 133-dimension feature vectors to train classifiers, only the first two
dimensions resulting from dimensionality reduction are used as training data. Using the
scores achieved during the full dimension tests as a baseline, the amount of information lost
during dimensionality reduction, as well as the overall effectiveness of each method, can
be quantified. In addition, each of the 12 time segmentation methods, as well as the full
sample length and the mixed time segmentation method, are included to further evaluate
the effectiveness of time segmentation. In total, 98 classification tests were run for each
kick and snare sample types. For both kick and snare drums, classification accuracy scores
were maximized when using t-SNE, with both random initialization and PCA initialization
producing similar results. The kick drum test produced an accuracy score of 76.3% using
mixed time segmentation for both t-SNE initialization strategies, compared to a score of
94% when using the full dimension feature vector and a mixed time segmentation. The
snare drum test produced an accuracy score of 58.6% using a time segment of 500ms po-
sitioned at 20% the attack and t-SNE with random intialization, compared to a score of

11
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71.21% when using the full dimension feature vector and a mixed time segmentation. Full
results for these tests are shown on Tables 3 and 4 for kicks and snares respectively.

Confusion matrices were produced for both kick and snare classification tests using t-
SNE with random initialization and mixed time segmentations. Comparing the confusions
matrices from before and after dimensionality reduction gives further insight into how re-
ducing to two-dimensions affects classifier performance. For kick drums, 89.67 out of 103
Yamaha RM50 samples were labelled correctly after dimensionality reduction compared to
102 out of 103 before. For snare drums, only 21.33 out of 67 Yamaha RM50 samples were
labelled correctly after dimensionality reduction compared 26.33 out of 67 before. 62.67 out
of 72 System-100 snare drum samples were labelled correctly after dimensionality reduction
compared to 71 out of 72 before. Full confusion matrix results for these tests are shown for
kicks and snares in Tables 5b and 6b respectively.

Audio samples used in the drum machine classification tests have been plotted using the
results from dimensionality reduction. The top method and time segmentation combination
are shown for both kicks and snares and a plot of the same time segmentation scheme
using PCA is also included for comparison. Kick drums plotted using PCA and the mixed
time segmentation scheme are shown in Figure 3a, kick drums using t-SNE with random
initialization and the mixed time segmentation scheme are shown in Figure 3b, snare drums
plotted using PCA and mixed time segmentations are shown in Figure 3c, and snare drums
plotted using t-SNE with random initialization and mixed time segmentations are shown
in Figure 3d. From a visual analysis, the t-SNE algorithms appear to improve separation
between samples clustered by drum machines. These findings are consistent with the claim
that t-SNE has a reduced tendency to crowd data points in the centre of the map, and in the
specific case, this has also translated in an improvement in classification scores compared
to other manifold learning techniques as well as PCA.

5. Subjective Testing

5.1 Design

A subjective listening test was undertaken to ascertain if the methods we use to generate
the intuitive browsing system is perceptually relevant to users. In the test, participants
were asked to rank the similarity of kick or snare drum sounds to a reference sound. This
question was designed to put listeners into an integrative state, such that they treat the
sounds as a whole, and don’t focus upon individual perceptual features [36].

5.2 Participants

Participants were recruited for the listening test using professional and research networks,
and online forums focussing on music production for genres where the use of drum samples
is prevalent. The listening test was approved by the human research ethics board at the
University of Victoria (ID 20-0101), with participants providing informed consent via an
online form as part of the listening test procedure. A total of 46 participants completed the
test, 6 were female, 37 were male, and 3 were non-binary or chose to not provide gender
information. The age range was 21 to 60, with a median age of 30. The average reported
experience of participants using kick and snare drum samples in music productions was 7.5
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Table 3: Tables 3 & 4 show accuracy scores in percentages for drum machine classification
task trained using the dimensionality reduced data from manifold learning for kicks and
snares respectively. Mean and standard deviation across validation folds is shown for each
combination of manifold learning and time segmentation method. The shaded cell shows
the highest overall score (multiple cells shown in case of a tie).

Length Start PCA Isomap LLE MDS Spectral TSNE TSNE PCA

25ms 20% 46.6± 8.0 46.3± 7.3 54.2± 6.9 46.6± 8.6 51.6± 8.5 65.1± 5.7 64.1± 7.5
25ms 50% 46.5± 7.7 43.0± 6.3 48.7± 8.8 42.9± 10.1 47.1± 8.4 64.7± 6.2 62.7± 8.2
25ms 90% 45.7± 9.5 39.4± 5.6 48.3± 6.7 53.7± 7.0 48.2± 8.6 55.8± 6.3 57.0± 5.9

100ms 20% 55.4± 8.0 49.5± 6.7 63.1± 9.2 62.8± 7.7 58.7± 7.3 73.9± 9.7 71.4± 7.1
100ms 50% 52.0± 6.4 39.4± 6.6 62.4± 7.9 63.2± 6.8 60.0± 10.5 75.6± 8.4 74.5± 8.4
100ms 90% 61.8± 8.0 56.5± 7.1 52.6± 8.2 62.6± 6.2 58.5± 6.6 70.2± 7.0 71.8± 7.4

250ms 20% 53.8± 8.6 55.4± 6.6 60.4± 9.5 57.5± 8.3 60.5± 8.8 70.3± 7.9 69.8± 8.3
250ms 50% 54.5± 9.6 42.2± 5.8 55.1± 8.5 56.0± 7.9 60.9± 8.5 70.5± 9.5 70.0± 9.2
250ms 90% 60.4± 6.5 35.4± 6.8 56.1± 8.6 54.8± 9.4 57.8± 5.9 72.2± 6.6 71.8± 5.9

500ms 20% 59.3± 8.2 44.3± 5.7 59.5± 8.5 57.0± 7.6 63.1± 9.2 71.9± 9.6 69.6± 8.6
500ms 50% 61.3± 8.2 48.8± 6.8 56.7± 9.7 55.6± 8.5 59.7± 8.0 71.4± 6.5 71.4± 7.9
500ms 90% 59.1± 6.6 51.7± 6.3 52.6± 8.7 55.0± 5.6 59.1± 8.4 70.5± 8.3 71.4± 8.2

Mixed - 59.1± 9.8 52.2± 9.5 60.7± 8.5 62.7± 9.6 59.9± 7.6 76.3± 8.9 76.3± 9.0

Full 0% 58.9± 7.2 48.1± 7.3 60.9± 10.5 59.8± 9.3 65.6± 8.8 72.5± 9.1 72.0± 7.6

Table 4: Accuracy scores from reduced dimension drum machine classification task for
snare drums.

Length Start PCA Isomap LLE MDS Spectral TSNE TSNE PCA

25ms 20% 41.1± 5.3 28.5± 4.3 35.9± 5.7 37.1± 5.2 33.8± 6.0 51.4± 4.9 50.1± 5.0
25ms 50% 38.2± 3.8 32.5± 4.6 34.2± 5.1 37.2± 6.1 34.4± 5.2 48.9± 6.2 49.3± 6.2
25ms 90% 35.9± 4.8 23.5± 4.3 36.1± 5.8 33.4± 5.2 32.0± 4.1 46.7± 6.7 47.7± 5.5

100ms 20% 40.7± 5.2 32.6± 5.8 42.5± 5.8 36.8± 5.0 37.7± 5.0 56.1± 4.9 56.6± 5.5
100ms 50% 42.5± 6.1 33.7± 5.8 38.8± 5.4 36.0± 4.0 37.9± 5.8 57.4± 5.3 58.5± 6.1
100ms 100% 42.2± 5.9 31.9± 4.7 39.8± 5.1 33.9± 4.5 35.1± 5.9 52.8± 5.7 53.7± 5.6

250ms 20% 39.2± 5.3 35.3± 5.1 33.0± 5.2 35.8± 5.5 33.8± 5.3 58.0± 6.4 57.5± 5.6
250ms 50% 38.6± 4.9 29.1± 4.3 35.8± 5.6 35.3± 5.1 33.9± 5.3 54.5± 6.1 55.8± 6.3
250ms 90% 37.5± 5.7 35.3± 4.3 34.7± 5.6 37.3± 5.2 33.2± 4.9 52.8± 6.9 53.1± 6.7

500ms 20% 40.7± 4.9 33.5± 7.3 38.1± 6.8 34.9± 5.3 34.5± 5.1 58.6± 7.1 57.1± 6.2
500ms 50% 39.8± 4.9 33.6± 4.4 36.9± 6.0 36.7± 5.7 33.0± 4.6 56.3± 6.5 58.0± 5.8
500ms 90% 38.6± 6.2 32.5± 4.6 36.9± 3.9 33.9± 6.5 34.1± 4.5 53.4± 7.0 54.3± 5.5

Mixed - 44.9± 5.0 33.9± 7.2 41.2± 7.3 35.8± 6.1 36.4± 5.8 56.4± 5.4 57.5± 6.1

Full 0% 41.7± 4.5 34.8± 5.3 38.8± 5.3 36.2± 5.0 35.2± 4.3 56.2± 5.7 56.5± 6.9
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Table 5: Kick drum machine classification confusion matrices. The dimensionality reduced
results for both kicks and snares were produced by running classification on the results of
t-SNE with random initialization using the mixed time segmentation method. Each row
shows how samples from that drum machine were classified and highlighted cells along the
diagonal are the number of correctly classified samples. Note that fractions are caused by
averaging between results from the three classification methods used.

(a) Kick Drums - Full Dimension

D
M
5

SR
-1
6
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-0
9
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R
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T
R
-9
09

R
M
50

DM5 84.67 2.33 1.33 2.67 3.00 1.00

SR-16 4.33 57.33 0.00 0.00 0.33 0.00

SH-09 0.00 0.00 80.33 5.67 0.00 0.00

TR-808 3.00 0.00 1.00 62.67 0.33 0.00

TR-909 2.33 0.00 0.33 2.00 46.33 0.00

RM50 0.00 1.00 0.00 0.00 0.00 102.00

(b) Kick Drums - Dimensionality Reduced

D
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SR
-1
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SH
-0
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T
R
-8
08

T
R
-9
09

R
M
50

DM5 56.67 18.33 4.33 6.33 4.67 4.67

SR-16 13.67 45.00 0.67 2.00 0.00 0.67

SH-09 0.33 5.00 61.67 18.67 0.33 0.00

TR-808 2.33 0.00 5.00 59.00 0.67 0.00

TR-909 1.67 4.67 10.67 2.67 31.33 0.00

RM50 0.00 13.33 0.00 0.00 0.00 89.67
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Table 6: Snare drum machine classification confusion matrices. The dimensionality reduced
results for both kicks and snares were produced by running classification on the results of
t-SNE with random initialization using the mixed time segmentation method. Each row
shows how samples from that drum machine were classified and highlighted cells along the
diagonal are the number of correctly classified samples. Note that fractions are caused by
averaging between results from the three classification methods used.

(a) Snare Drums - Full Dimension
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R
M
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DM5 87.67 4.00 3.33 0.33 0.33 0.33 3.00 3.67 5.33

SR-16 1.33 47.67 2.33 0.00 0.67 0.67 2.33 9.67 6.33

DR-660 0.67 5.33 60.67 1.00 1.33 0.67 0.67 4.67 2.00

Sys-100 0.33 0.00 0.00 72.00 0.00 0.00 0.00 0.67 0.00

TR-808 0.00 1.33 0.67 0.00 58.33 0.00 0.67 0.00 2.00

TR-909 0.00 0.33 1.33 0.00 0.00 87.67 0.00 0.00 0.67

CS6 3.67 6.00 1.33 0.00 2.67 0.67 51.00 0.00 3.67

RY30 5.33 2.00 3.33 1.00 0.00 0.00 1.00 95.33 0.00

RM50 6.33 14.33 2.67 0.00 1.67 2.00 8.67 5.00 26.33

(b) Snare Drums - Dimensionality Reduced
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DM5 64.67 11.67 6.67 0.00 3.00 5.00 7.00 6.00 4.00

SR-16 15.67 24.00 3.67 3.67 2.33 2.33 4.00 10.33 5.00

DR-660 8.67 9.00 30.67 5.00 4.67 1.67 1.00 13.00 3.33

Sys-100 0.67 5.00 0.67 62.67 3.00 0.00 0.33 0.67 0.00

TR-808 2.33 1.67 0.00 1.00 49.33 4.67 0.33 3.67 0.00

TR-909 6.00 3.33 0.00 0.00 11.33 64.67 3.33 1.33 0.00

CS6 17.33 6.00 1.33 0.00 5.67 4.33 30.33 2.00 2.00

RY30 13.67 11.67 6.33 1.00 0.33 1.00 1.33 71.67 1.00

RM50 14.33 8.67 4.67 1.00 0.33 4.33 5.33 7.00 21.33
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(a) Kicks, mixed segmentation, PCA (b) Kicks, mixed segmentation, t-SNE random init

(c) Snares, mixed segmentation, PCA
(d) Snares, mixed segmentation, t-SNE random
init

Figure 3: Scatter plots of samples used in the drum machine classification tasks. Samples
are visualized for kicks and snares using PCA as well as t-SNE with random initialization.
The mixed time segmentation scheme is shown for all plots. The centroid for each drum
machine is marked with a larger symbol and is circled. Note that dimensions are left
unlabelled; after dimension reduction the ’x’ and ’y’ axis correspond to the 1st and 2nd
dimensions produced by the dimensionality reduction algorithms.

years, with 39 participants reporting having one year or more of experience working with
drum samples. 33 participants reported that they currently produced, mixed, or remixed
music that uses drum samples.

5.3 Materials

A set of 16 reference sounds (8 kick and 8 snare) were selected using the output from the
feature extraction process described in section 2.2, with no time segmentation applied. In
order to ensure that these samples were representative of the variety of drum samples found
in the larger collection (4230), eight equally sized groups were created for both kicks and
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snares using distance measures from the centroid of the entire data set. Samples with a
distance in the top fifth percentile were considered outliers and were not considered for
reference selection. One sample from each of these eight groups was then randomly selected
to be a reference. Once 16 references had been selected, five stimuli were selected such that
each stimuli was at ever increasing percentile distances from the reference up to the sample
at the 90th percentile distance. This provided the materials for a total of 16 individual
listening tests, eight using kick drum samples and eight using snare drum samples, and a
total of 80 unique sample pair similarity ratings.

5.4 Apparatus

A MUSHRA style [37] listening test was used for this study, created using the Web-Audio
Evaluation Tool [38]. The MUSHRA test format was selected because it allows for the
comparison of a collection of sounds, which can be seen as representative of a visual browsing
system, and has been shown as effective in a similar study evaluating the similarity between
sounds [39]. Participants were presented with the apparatus shown in figure 4, and asked
to use the sliders to rank the similarity of the samples to the reference sound. The vertical
continuous, unnumbered slider was labelled with ”identical” for the maximum and ”least
similar” for the minimum values. These labels were chosen to encourage participants to
use the end points of the scale, to prevent a clustering of responses in the middle of the
scale [36], and as a means of reliably reporting when they were able to identify the hidden
reference, which was included for all tests.

5.5 Procedure

All listening tests were conducted remotely using a webpage 6. Participants were allowed to
set their desired playback level, and use equipment and environments that they were familiar
and comfortable with. The test contained a total of 16 pages, each with one reference, and
a random selection of 8 pages was presented to each user to reduce the amount of time
per test. Listeners were instructed to use the interface to rank the similarity of test items
compared to the reference, with the system ensuring each slider had been moved and each
test item had been played before allowing the participant to continue to the next page of
the test. All ratings were recorded on a scale from 0 to 1, with 0 being ’least similar’ and
1 being ’most similar / identical’.

5.6 Results

Each test page received a minimum of 21 responses and an average of 23 responses per
page. The average time taken to complete the listening test was 8.4 minutes. To deter-
mine if listeners consistently ranked drum samples as similar, the results were analyzed
using weighted Spearmen correlation coefficients to determine Kendall’s coefficient of con-
cordance [40, 41, 42]. This method was necessary because of the experimental design, which
resulted in a non-uniform distribution of page responses. Results of the analysis show that
participants rated drum samples significantly similar (0.39, p∼0). The same analysis was
used to evaluate the effect of the self-reported experience using drum samples by listen-

6. https://listeningtest.uvic.ca
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Figure 4: Interface of the listening test apparatus, which was administered online and
built using the Web Audio Evaluation Tool. Test was a MUSHRA style listening test with
five stimuli and one hidden reference. Participants were asked to rate each sample to the
reference based on sound similarity

ing test subjects, and interestingly listeners with no experience rated drum samples more
similarly (0.42, p∼0) than listeners with experience using drum samples (0.40, p∼0).

Correlation coefficients between the average sample similarity ranking from the listening
test and the similarity measure taken from the audio feature extraction was used to investi-
gate how well the full dimensional results correlate with the subjective similarity rankings,
and how this compared against the time-segmentation and the different dimensionality re-
duction methods. Computational similarity was calculated as the negative of the Euclidian
distance between samples. The correlation coefficient between the average ranking for a
sample and the similarity measure from the feature extraction with no time segmentation
or dimensionality reduction was 0.8717. Correlation was maximized on the full dimension
data using the mixed time segmentation method (0.8935). The dimensionality reduction
method that performed the best was MDS using a time segmentation with a sample length
of 100ms starting at 20% of the sample attack, which resulted in a correlation coefficient of
0.8329. The method that performed the worst was locally linear, with an average correla-
tion coefficient of 0.32. The heatmap in Figure 5 shows the correlation coefficients for all
dimensionality reduction and time segmentation methods.

6. Software Implementation

The methods described in this paper have been integrated into a plugin developed by
the authors using the JUCE framework7. The goal of the plugin is to provide music
producers with a more efficient and intuitive method to search and audition drum sam-
ples within digital audio workstations. Samples are automatically organized based upon
sound similarity and visually represented using a 2D grid, which can then be mapped to

7. https://www.juce.com/
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Figure 5: Heatmap showing the correlation coefficients between average similarity ranking
from the listening test and computational similarity measurement using a specific combi-
nation of dimensionality reduction and time segmentation. The top row shows values for
no dimensionality reduction where similarity ranking was computed on the full-dimension
feature set.

a hardware controller, such as the Ableton Push controller. For a complete overview of
the software implementation please see [6]. Source code and documentation is available at
https://github.com/jorshi/sieve.

7. Reproducibility

The authors welcome any feedback and contributions on the GitHub page 8 in accordance
with the recommendations for open access and reproducibility in signal processing research
presented by Vandewalle et al. [43]. The dataset is also available upon request.

8. https://github.com/jorshi/sample_analysis
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8. CONCLUSION

In this paper we presented a methodology for computationally characterizing and organiz-
ing kick and snare drum samples in two-dimensions based on sound similarity. The goal of
this methodology is to support the development of intuitive audio sample browsing systems
that improve upon the current approach of browsing through lists or searching using text
or semantic tags. In this work, the use of time segmentation was explored, which isolates
a temporal subset of an audio sample prior to audio feature extraction. Several different
segmentations comprised of various lengths and start position offsets were compared. Time
segmentation was shown to improve classification scores and produce sample similarity rat-
ings that correlate more highly with subjective rankings when compared to results using
the full sample duration. A mixed time segmentation method was introduced that selects a
segmentation for each audio feature independently to maximize variance. Objective evalua-
tion using a drum machine classification task showed that using a mixed time segmentation
approach resulted in the highest accuracy when trained on the full dimension dataset. Using
mixed time segmentations also lead to the highest classification scores for kick drums when
trained using the dimensionality reduced data.

Manifold learning was explored to reduce the high dimensional results from audio feature
extraction down to two dimensions for visualization, and several different manifold learning
algorithms were compared. Audio classification results showed that the t-SNE manifold
learning algorithm outperformed all other dimensionality reduction techniques compared
in this study. Qualitative evaluation using visual plots of the audio samples after dimen-
sionality reduction confirmed the classification results, where centroid values for each drum
machine are observed as being spaced further apart from each other, creating a clearer
representation of the ’sonic layout’ of the sample set.

A listening test was carried to generate ground truth similarity rankings for a set of kick
and snare drum samples to evaluate the perceptual relevance of the presented methodology.
Findings show that the mixed time segmentation approach with no dimensionality reduction
produced drum sample similarity scores that correlate most highly with the subjective
similarity rankings. The MDS algorithm with time segmentation produced an organization
of samples in two-dimensions that correlated most highly the subjective rankings.

These results show that time segmentation is a beneficial step in the process of compu-
tationally characterizing and organizing drum samples in two-dimensions based on sound
similarity. The use of mixed time segmentations produced promising results during the
audio classification tasks and is an area for exploration in future related work. A limitation
of the current implementation of the mixed time segmentation scheme is that it requires
all features to be calculated for all time segmentations for a set of samples before time
segmentations can be selected; the time and storage requirements of this approach might
not be appropriate for a production ready application. Exploring techniques for improving
the efficiency of this calculation is another area of future work.

Extending the scope of this work beyond kick and snare drum machine sounds would
be a natural next step for building upon this methodology. Percussion instruments lend
themselves well to our proposed method for calculating time segmentations due to their
transient nature, however more work is required to explore the effectiveness with differ-
ent percussion instruments as well as acoustic sounds. Extending this technique beyond
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percussion instruments would also be an interesting area of study. Exploring different ap-
proaches to using time segmentation could also lead to some valuable improvements. For
example, instead of completely isolating a time segment prior to audio feature extraction,
an alternative method could instead emphasize (or de-emphasize) the selected time segment
in relation to the whole audio clip. This could be implemented in a way that would allow a
user to selectively look for sounds and focus on certain temporal aspects (ex. a user looking
for a kick drum sound with a specific attack character could indicate on the user interface
that they are interested in that portion of the sound).
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