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Introduction and Motivation
 Audio plug-in designed to assist music producers with HEE

Iy

the sorting, selection and auditioning tasks associated =======- framework.
with the use of large electronic kick and snare drum T TS = * Essentia is used for feature extraction and computation
sample libraries within a music production context. B S — of PCA

A database of 4230 kick and snare samples representing
250 individual electronic drum machines was used in this
study.
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Methodology Ll

* Analysis of kick and snare drum sounds using time — |
segmentation as a pre-processing step to audio feature HEE
extraction informed by prior work into the EEEEEEN
characterization of percussive sounds. [1- 3].

* Audio feature extraction performed using the Essentia
library [4]. .

 Audio features used include: Bark bands, MFCCs, HFC,

 SQLite database was implemented to manage loaded
samples, results of feature extraction and PCA.

* Figure 1 shows plugin Ul and sample arrangement
scheme.
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Conclusion and Future Work

* Shorter time segments of audio for analysis improved
the majority of kick and snare drum classification tasks.

Manufacturer classification proved more challenging
and is an area for future exploration.

Figure 1: Sieve Plugin Interface and browsing overview

Table 1: Classification Scores for various tasks preprocessed with time segmentation
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Audio classification and PCA using Scikit-learn [5] is used Mixed? 97.52% 84.20% 69.88% 46.23% 46.03% instructed timing and tempo on snare drum sound in drum kit performance,”

to compare the effect of the time segmentation on audio
feature extraction.

Classification tasks included: sample type, drum

I Entire duration of sample
2 Time segmentation and start position selected independently for each feature so that the variance for that feature

1S maximized

Table 2: Variance ratios from PCA after applying various time segmentations
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Snare.

Main contributing features:

I Dim 1: HFC, HFC Std Dev, Mid-High Spectral Energyband

2 Dim 2: Spectral Flatness dB, Spectral Centroid, Spectral Kurtosis
3 Dim 1: HFC, HFC Std Dev, High Spectral Energyband; Dim 2: MFCC Band 2, Mid-Low Spectral Energyband Std Dev, Mid Low Spectral Energyband

[6] M. Cartwright, B. Pardo, and J. Reiss, “Mixploration: Rethinking the audio
mixer interface,” in The 19th international conference on Intelligent User

Interfaces, pp. 365-370, ACM, 2014.

4 Dim 1: Spectral Energy, Bark Band 18 and 19
> Dim 2: Spectral Decrease, Spectral Decrease Std Dev, Spectral RMS
¢ Dim 1:Spectral Energy, Bark Band 18 and 19 Dim 2: Bark Spread Std Dev, Zero Crossing Rate Std Dev, MFCC Band 5




